Corrigendum to “Drinking water vulnerability in rural coastal areas of Bangladesh during and after natural extreme events” [Int. J. Disaster Risk Reduct. 14 (2015) 411–423]

2019 ◽  
Vol 35 ◽  
pp. 101086
Author(s):  
Raju Sarkar ◽  
Joachim Vogt
2021 ◽  
Vol 40 (4) ◽  
pp. 242-243
Author(s):  
Kirsten Nicholson ◽  
Klaus Neumann ◽  
Subodh Sharma ◽  
Lakpa Thering Sherpa

In 2019, after almost a decade of working on water quality in the Himalayas, we submitted a proposal to Geoscientists Without Borders® (GWB) titled “Understanding high mountain aquifers to source drinking water in Sagarmatha National Park.” The project involves a combination of water-quality and quantity measurements, geologic mapping, and an electrical resistivity tomography survey. The goal of the project is to help two communities (Phortse and Lobuche within Sagarmatha National Park in Nepal) minimize their water vulnerability to climate change and earthquakes. The project team includes researchers and students from the United States and Nepal, as well as nongovernmental organizations, government agencies, and community councils. In the proposal, we identified physical health and altitude as the primary risks that could hinder the success of the project. Like everyone else in early 2019, we had no way to foresee the events of 2020, which would almost completely derail our project. Health has turned out to be the major hinderance. The irony of the global pandemic is how much it has impacted the work of the U.S.-based team and how little it has impacted the necessity of the project.


2018 ◽  
Author(s):  
Anne Wiese ◽  
Joanna Staneva ◽  
Johannes Schultz-Stellenfleth ◽  
Arno Behrens ◽  
Luciana Fenoglio-Marc ◽  
...  

Abstract. In this study, the quality of wind and wave data provided by the new Sentinel-3A satellite is evaluated. We focus on coastal areas, where altimeter data are of lower quality than those for the open ocean. The satellite data of Sentinel-3A, Jason-2 and CryoSat-2 are assessed in a comparison with in situ measurements and spectral wave model (WAM) simulations. The sensitivity of the wave model to wind forcing is evaluated using data with different temporal and spatial resolution, such as ERA-Interim and ERA5 reanalyses, ECMWF operational analysis and short-range forecasts, German Weather Service (DWD) forecasts and regional atmospheric model simulations -coastDat. Numerical simulations show that both the wave model forced using the ERA5 reanalyses and that forced using the ECMWF operational analysis/forecast demonstrate the best capability over the whole study period, as well as during extreme events. To further estimate the variance of the significant wave height of ensemble members for different wind forcings, especially during extreme events, an empirical orthogonal function (EOF) analysis is performed. Intercomparisons between remote sensing and in situ observations demonstrate that the overall quality of the former is good over the North Sea and Baltic Sea throughout the study period, although the significant wave heights estimated based on satellite data tend to be greater than the in situ measurements by 7 cm to 26 cm. The quality of all satellite data near the coastal area decreases; however, within 10 km off the coast, Sentinel-3A performs better than the other two satellites. Analyses in which data from satellite tracks are separated in terms of onshore and offshore flights have been carried out. No substantial differences are found when comparing the statistics for onshore and offshore flights. Moreover, no substantial differences are found between satellite tracks under various metocean conditions. Furthermore, the satellite data quality does not depend on the wind direction relative to the flight direction. Thus, the quality of the data obtained by the new Sentinel-3A satellite over coastal areas is improved compared to that of older satellites.


2016 ◽  
Vol 03 (04) ◽  
pp. 1650017 ◽  
Author(s):  
Joern Birkmann ◽  
Friedemann Wenzel ◽  
Stefan Greiving ◽  
Matthias Garschagen ◽  
Dirk Vallée ◽  
...  

The importance of critical infrastructures and strategic planning in the context of extreme events, climate change and urbanization has been underscored recently in international policy frameworks, such as the Sustainable Development Goals (SDGs), the Sendai Framework for Disaster Risk Reduction 2015–2030 (UNISDR (United Nations/International Strategy for Disaster Risk Reduction) 2015), and the new Paris climate agreement (UNFCCC (United Nations — Framework Convention on Climate Change) 2015) as well as the New Urban Agenda (UN-HABITAT 2016). This paper outlines key research challenges in addressing the nexus between extreme weather events, critical infrastructure resilience, human vulnerability and strategic planning. Using a structured expert dialogue approach (particularly based on a roundtable discussion funded by the German National Science Foundation (DFG)), the paper outlines emerging research issues in the context of extreme events, critical infrastructures, human vulnerability and strategic planning, providing perspectives for inter- and transdisciplinary research on this important nexus. The main contribution of the paper is a compilation of identified research gaps and needs from an interdisciplinary perspective including the lack of integration across subjects and mismatches between different concepts and schools of thought.


2011 ◽  
Vol 9 (2) ◽  
pp. 415-428 ◽  
Author(s):  
Md. Atikul Islam ◽  
Hiroyuki Sakakibara ◽  
Md. Rezaul Karim ◽  
Masahiko Sekine ◽  
Zahid Hayat Mahmud

This study was conducted to assess the bacteriological quality of alternative drinking water supply options in southwest coastal areas of Bangladesh. A total of 90 water samples were collected during both dry and wet seasons from household based rainwater harvesting systems (RWHSs), community based rain water harvesting systems (CRWHSs), pond-sand filters (PSFs) and ponds. The samples were evaluated for faecal coliform, Escherichia coli and Heterotrophic Plate Count, as well as Vibrio cholerae, Salmonella spp., Shigella spp. and Pseudomonas spp. Physico-chemical parameters (pH, electrical conductivity, and color) were also examined. In addition, sanitary inspections were conducted to identify faecal contamination sources. All options showed varying degrees of indicator bacterial contamination. The median E. coli concentrations measured for RWHSs, CRWHSs, PSFs, and ponds were 16, 7, 11, and 488 cfu/100 ml during the wet season, respectively. Vibrio cholerae O1/O139, Salmonella and Shigella spp. were not found in any samples. However, Vibrio cholerae Non-O1/Non-O139 and Pseudomonas spp. were isolated from 74.4% and 91.1% of the water samples collected during the wet season. A maximum pH of 10.4 was found in CRWHSs. Estimation of the disease burden for all options in disability adjusted life years (DALYs) showed an increased disease burden during the wet season. According to sanitary inspections, poor maintenance and unprotected ponds were responsible for rainwater and PSF water contamination, respectively. The findings of the present study suggest that alternative drinking water supply options available in southwest coastal Bangladesh pose a substantial risk to public health.


Healthcare ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 50 ◽  
Author(s):  
Mashura Shammi ◽  
Md. Rahman ◽  
Serene Bondad ◽  
Md. Bodrud-Doza

Increasing salt intake has substantial negative impacts on human health and well-being. This article focused on the construction of Driver-Pressure-State-Impact-Response (DPSIR) framework for drinking water sodium (DWS) followed by a review on the published studies regarding salinity intrusion, DWS, and their effects on health perspectives in Bangladesh. Saline water is an important factor for hypertension or high blood pressure in the coastal areas. DWS can also lead women, especially pregnant women, to an increased risk of (pre)eclampsia, hypertension, as well as infant mortality. Several interventions, such as rainwater harvesting, pond sand filter (PSF) system, managed aquifer recharge (MAR), and pilot scale solar-powered desalination plants, such as reverse osmosis (RO), were reviewed on the context of their effectiveness in controlling drinking water sodium. Although rainwater consumption has the positive impact of low or no sodium intake, it still possesses negative impacts from not having vital minerals. A steady increment in sodium concentration through the span of the dry season was observed in MAR. It is, subsequently, important to increase awareness on DWS intake by providing and adopting correct technological interventions and training communities on the maintenance of the adaptive measures.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Thuy T. Nguyen ◽  
Paul K. Westerhoff

Abstract De facto potable reuse occurs when treated wastewater is discharged upstream of drinking water treatment plants (DWTPs) and can lead to contaminants of emerging concern (CECs) occurring in potable water. Our prior research, focusing on larger communities that each serve >10,000 people across the USA, indicates that elevated de facto reuse (DFR) occurs in Texas, and thus we added to our model DWTPs serving smaller communities to understand their vulnerability to CECs. Here, we show that two-thirds of all surface water intakes in Texas were impacted by DFR at levels exceeding 90% during even mild droughts, and under average streamflow DFR levels range between 1 and 20%. DWTPs serving lower population communities (<10,000 people) have higher DFR levels, and fewer than 2% of these communities have advanced technologies (e.g., ozone, activated carbon) at DWTPs to remove CECs. Efforts to improve water quality in these less populated communities are an important priority. The model approach and results can be used to identify prioritization for monitoring and treatment of CECs, including in underserved communities, which normally lack knowledge of their impacts from DFR occurring within their watersheds.


Author(s):  
Evan Su Wei Shang ◽  
Eugene Siu Kai Lo ◽  
Zhe Huang ◽  
Kevin Kei Ching Hung ◽  
Emily Ying Yang Chan

Although much of the health emergency and disaster risk management (Health-EDRM) literature evaluates methods to protect health assets and mitigate health risks from disasters, there is a lack of research into those who have taken high-risk behaviour during extreme events. The study’s main objective is to examine the association between engaging in high-risk behaviour and factors including sociodemographic characteristics, disaster risk perception and household preparedness during a super typhoon. A computerized randomized digit dialling cross-sectional household survey was conducted in Hong Kong, an urban metropolis, two weeks after the landing of Typhoon Mangkhut. Telephone interviews were conducted in Cantonese with adult residents. The response rate was 23.8% and the sample was representative of the Hong Kong population. Multivariable logistic regressions of 521 respondents adjusted with age and gender found education, income, risk perception and disaster preparedness were insignificantly associated with risk-taking behaviour during typhoons. This suggests that other factors may be involved in driving this behaviour, such as a general tendency to underestimate risk or sensation seeking. Further Health-EDRM research into risk-taking and sensation seeking behaviour during extreme events is needed to identify policy measures.


Author(s):  
Eko Rudianto ◽  
Abdul Muhari ◽  
Kenji Harada ◽  
Hideo Matsutomi ◽  
Hendra Yusran Siry ◽  
...  

2020 ◽  
Author(s):  
Pau Luque Lozano ◽  
Lluís Gómez-Pujol ◽  
Marta Marcos ◽  
Alejandro Orfila

&lt;p&gt;Sea-level rise induces a permanent loss of land with widespread ecological and economic impacts, most evident in urban and densely populated areas. The eventual coastline retreat combined with the action of waves and storm surges will end in more severe damages over coastal areas. These effects are expected to be particularly significant over islands, where coastal zones represent a relatively larger area vulnerable to marine hazards.&lt;/p&gt;&lt;p&gt;Managing coastal flood risk at regional scales requires a prioritization of resources and socioeconomic activities along the coast. Stakeholders, such as regional authorities, coastal managers and private companies, need tools that help to address the evaluation of coastal risks and criteria to support decision-makers to clarify priorities and critical sites. For this reason, the regional Government of the Balearic Islands (Spain) in association with the Spanish Ministry of Agriculture, Fisheries and Environment has launched the Plan for Climate Change Coastal Adaptation. This framework integrates two levels of analysis. The first one relates with the identification of critical areas affected by coastal flooding and erosion under mean sea-level rise scenarios and the quantification of the extent of flooding, including marine extreme events. The second level assesses the impacts on infrastructures and assets from a socioeconomic perspective due to these hazards.&lt;/p&gt;&lt;p&gt;In this context, this paper quantifies the effects of sea-level rise and marine extreme events caused by storm surges and waves along the coasts of the Balearic Islands (Western Mediterranean Sea) in terms of coastal flooding and potential erosion. Given the regional scale (~1500 km) of this study, the presented methodology adopts a compromise between accuracy, physical representativity and computational costs. We map the projected flooded coastal areas under two mean sea-level rise climate change scenarios, RCP4.5 and RCP8.5. To do so, we apply a corrected bathtub algorithm. Additionally, we compute the impact of extreme storm surges and waves using two 35-year hindcasts consistently forced by mean sea level pressure and surface winds from ERA-Interim reanalysis. Waves have been further propagated towards the nearshore to compute wave setup with higher accuracy. The 100-year return levels of joint storm surges and waves are used to map the spatial extent of flooding in more than 200 sandy beaches around the Balearic Islands by mid and late 21st century, using the hydrodynamical LISFLOOD-FP model and a high resolution (2 m) Digital Elevation Model.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document