Foundation News: Impact of the pandemic on the GWB drinking water project in the Nepal Himalaya region

2021 ◽  
Vol 40 (4) ◽  
pp. 242-243
Author(s):  
Kirsten Nicholson ◽  
Klaus Neumann ◽  
Subodh Sharma ◽  
Lakpa Thering Sherpa

In 2019, after almost a decade of working on water quality in the Himalayas, we submitted a proposal to Geoscientists Without Borders® (GWB) titled “Understanding high mountain aquifers to source drinking water in Sagarmatha National Park.” The project involves a combination of water-quality and quantity measurements, geologic mapping, and an electrical resistivity tomography survey. The goal of the project is to help two communities (Phortse and Lobuche within Sagarmatha National Park in Nepal) minimize their water vulnerability to climate change and earthquakes. The project team includes researchers and students from the United States and Nepal, as well as nongovernmental organizations, government agencies, and community councils. In the proposal, we identified physical health and altitude as the primary risks that could hinder the success of the project. Like everyone else in early 2019, we had no way to foresee the events of 2020, which would almost completely derail our project. Health has turned out to be the major hinderance. The irony of the global pandemic is how much it has impacted the work of the U.S.-based team and how little it has impacted the necessity of the project.

2021 ◽  
Author(s):  
Kirsten Nicholson ◽  
Klaus Neumann ◽  
Joshua Gruver ◽  
Steven Hall ◽  
Misa Nishikawa ◽  
...  

2017 ◽  
Vol 6 (2) ◽  
pp. 411 ◽  
Author(s):  
Kirsten Ngaire Nicholson ◽  
Klaus Neumann ◽  
Carolyn Dowling ◽  
Subodh Sharma

During the 2016 pre-monsoon dry season, we undertook a systematic study of water quality, specifically fecal contamination of drinking water, in the Khumbu Valley, Sagarmatha National Park (SNP, Mt. Everest region) and SNP buffer zone, Nepal. Our goal was to quantify physical parameters (temperature, pH, conductivity and total dissolved solids), and the presence of fecal coliforms (E. coli and total coliforms) in drinking water and drinking water sources (predominately groundwater-fed springs). This data set will function as a baseline for access to potable water and further monitoring. Sample sites were selected based on primary use as a drinking water and/or drinking water source for each community. In general, there is little correlation between and physical parameters however, there are very weak correlations between total coliform data and increasing temperature, and decreasing elevation and pH. There does, however, appear to be a correlation between population (including tourist numbers) and both E. coli and total coliforms. Our study clearly indicates that the presence of bacterial indicators of fecal pollution during the dry season. Samples from the more populated, lower altitude areas had higher levels of E. coli and coliform bacteria. Importantly, drinking water that was stored in tanks or transported long distances had a much higher incidence of E. coli and total coliforms suggesting that a change in water handling practices might have an important impact on drinking water quality and population health. 


2016 ◽  
Vol 04 (04) ◽  
pp. 43-53 ◽  
Author(s):  
Kirsten Nicholson ◽  
Emily Hayes ◽  
Klaus Neumann ◽  
Carolyn Dowling ◽  
Subodh Sharma

Author(s):  
Kirsten N. Nicholson ◽  
◽  
Klaus Neumann ◽  
Carolyn B. Dowling ◽  
Subodh Sharma

2017 ◽  
Author(s):  
Klaus Neumann ◽  
◽  
Kirsten N. Nicholson ◽  
Carolyn B. Dowling ◽  
Leah Wood ◽  
...  

2015 ◽  
Vol 14 (2) ◽  
pp. 223-235 ◽  
Author(s):  
Katherine Phetxumphou ◽  
Siddhartha Roy ◽  
Brenda M. Davy ◽  
Paul A. Estabrooks ◽  
Wen You ◽  
...  

The United States Environmental Protection Agency mandates that community water systems (CWSs), or drinking water utilities, provide annual consumer confidence reports (CCRs) reporting on water quality, compliance with regulations, source water, and consumer education. While certain report formats are prescribed, there are no criteria ensuring that consumers understand messages in these reports. To assess clarity of message, trained raters evaluated a national sample of 30 CCRs using the Centers for Disease Control Clear Communication Index (Index) indices: (1) Main Message/Call to Action; (2) Language; (3) Information Design; (4) State of the Science; (5) Behavioral Recommendations; (6) Numbers; and (7) Risk. Communication materials are considered qualifying if they achieve a 90% Index score. Overall mean score across CCRs was 50 ± 14% and none scored 90% or higher. CCRs did not differ significantly by water system size. State of the Science (3 ± 15%) and Behavioral Recommendations (77 ± 36%) indices were the lowest and highest, respectively. Only 63% of CCRs explicitly stated if the water was safe to drink according to federal and state standards and regulations. None of the CCRs had passing Index scores, signaling that CWSs are not effectively communicating with their consumers; thus, the Index can serve as an evaluation tool for CCR effectiveness and a guide to improve water quality communications.


2021 ◽  
Author(s):  
Katie Wampler ◽  
Kevin D. Bladon ◽  
Monireh Faramarzi

<p>Forested watersheds are critical sources of the majority of the world’s drinking water. Almost one-third of the world’s largest cities and two-thirds of cities in the United States (US) rely on forested watersheds for their water supply. These forested regions are vulnerable to the increasing incidence of large and severe wildfires due to increases in regional temperatures and greater accumulation of fuels. When wildfires occur, increases in suspended sediment and organic carbon can negatively affect aquatic ecosystem health and create many costly challenges to the drinking water treatment process. These effects are often largest in the first year following a wildfire. While past research has shown the likelihood of source water impacts from wildfire, the magnitude of effects remains uncertain in most regions. In our study, we will quantify the projected short-term effects of three large (>70,000 ha) wildfires on key water quality parameters (sediment and organic carbon) in two important forested source watersheds in the Cascade Range of Oregon, US. We calibrated and validated a modified Soil and Water Assessment Tool (SWAT) to simulate streamflow, sediment loads and transport, as well as in-stream organic carbon processes for a historical period prior to wildfire. The calibrated model parameters were then modified based on literature values and burn severity maps to represent post-fire conditions of the three large wildfires. The parameter adjustments for simulating wildfire will be validated with post-fire water quality field samples from the wildfires. We will present estimations of future water quality impacts in the burned watersheds under different precipitation conditions at a daily scale for the first year following the wildfires, which will provide testable hypotheses. Additionally, we will determine catchment characteristics most critical in determining the post-fire water quality response. This work will help predict the magnitude of effects from these historic wildfires, which can inform forest and drinking water management decision making.</p>


2005 ◽  
Vol 52 (9) ◽  
pp. 235-242
Author(s):  
J.G. Schulte ◽  
A.H. Vicory

Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.


2019 ◽  
Vol 116 (42) ◽  
pp. 20917-20922
Author(s):  
Maura Allaire ◽  
Taylor Mackay ◽  
Shuyan Zheng ◽  
Upmanu Lall

Drinking-water contaminants pose a risk to public health. When confronted with elevated levels of contaminants, individuals can take actions to reduce exposure. Yet, few studies address averting behavior due to impaired water, particularly in high-income countries. This is a problem of national interest, given that 9 million to 45 million people have been affected by water quality violations in each of the past 34 years. No national analysis has focused on the extent to which communities reduce exposure to contaminated drinking water. Here, we present an assessment that sheds light on how communities across the United States respond to violations of the Safe Drinking Water Act, using consumer purchases of bottled water. This study provides insight into how averting behavior differs across violation types and community demographics. We estimate the change in sales due to water quality violations, using a panel dataset of weekly sales and violation records in 2,151 counties from 2006 to 2015. Critical findings show that violations which pose an immediate health risk are associated with a 14% increase in bottled water sales. Generally, greater averting action is taken against contaminants that might pose a greater perceived health risk and that require more immediate public notification. Rural, low-income communities do not take significant averting action for elevated levels of nitrate, yet experience a higher prevalence of nitrate violations. Findings can inform improvements in public notification and targeting of technical assistance from state regulators and public health agencies in order to reduce community exposure to contaminants.


Sign in / Sign up

Export Citation Format

Share Document