Effects of low-impact development practices for flood events at the catchment scale in a highly developed urban area

2020 ◽  
Vol 44 ◽  
pp. 101412 ◽  
Author(s):  
Chaeyoung Bae ◽  
Dong Kun Lee
2019 ◽  
Author(s):  
◽  
Ali Shallal

[ACCESS RESTRICTED TO THE UNIVERSITY OF MISSOURI AT REQUEST OF AUTHOR.] Modeling rainfall runoff can help to understand what is happening throughout the system, how can control of water to prevent flood, and how much the quality of runoff can change in urban area. Modeling sewer system help decision maker to indicate best strategy to prevent flooding, reduce runoff pollution, reduce cost of wastewater treatment and determine best suitable LID to an urban area. This dissertation first starting with analysis the complexity of model necessary to get accepted result in term peak flow, runoff volume, numbers of flooding nodes and time to peak. Modeling requirements may lead to system simplification, as in limiting the size of the pipes included in the analyses. Researchers analyzed the combined sewer system of the urbanized Town Fork Creek catchment in Kansas City, Missouri using PCSWMM to assess the potential impact of the simplifications on hydraulic results.


Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1415 ◽  
Author(s):  
Abdul Razaq Rezaei ◽  
Zubaidah Ismail ◽  
Mohammad Hossein Niksokhan ◽  
Muhammad Amin Dayarian ◽  
Abu Hanipah Ramli ◽  
...  

The vast development of urban areas has resulted in the increase of stormwater peak runoff and volume. Water quality has also been adversely affected. The best management practices (BMPs) and low impact development (LID) techniques could be applied to urban areas to mitigate these effects. A quantity–quality model was developed to simulate LID practices at the catchment scale using the US Environmental Protection Agency Storm Water Management Model (US EPA SWMM). The purpose of the study was to investigate the impacts of LID techniques on hydrology and water quality. The study was performed in BUNUS catchment in Kuala Lumpur, Malaysia. This study applied vegetated swale and rain garden to assess the model performance at a catchment scale using real field data. The selected LIDs occupied 7% of each subcatchment (of which 40% was swale and 30% was rain garden). The LID removal efficiency was up to 40% and 62% for TN and TSS, respectively. The peak runoff reduction was up to 27% for the rainfall of up to 70 mm, and up to 19% for the rainfall of between 70 and 90 mm, respectively. For the longer storm events of higher than 90 mm the results were not as satisfactory as expected. The model was more effective in peak runoff reduction during the shorter rainfall events. As for the water quality, it was satisfactory in all selected rainfall scenarios.


2006 ◽  
Vol 7 (4) ◽  
pp. 660-677 ◽  
Author(s):  
Enrique R. Vivoni ◽  
Dara Entekhabi ◽  
Rafael L. Bras ◽  
Valeriy Y. Ivanov ◽  
Matthew P. Van Horne ◽  
...  

Abstract The predictability of hydrometeorological flood events is investigated through the combined use of radar nowcasting and distributed hydrologic modeling. Nowcasting of radar-derived rainfall fields can extend the lead time for issuing flood and flash flood forecasts based on a physically based hydrologic model that explicitly accounts for spatial variations in topography, surface characteristics, and meteorological forcing. Through comparisons to discharge observations at multiple gauges (at the basin outlet and interior points), flood predictability is assessed as a function of forecast lead time, catchment scale, and rainfall spatial variability in a simulated real-time operation. The forecast experiments are carried out at temporal and spatial scales relevant for operational hydrologic forecasting. Two modes for temporal coupling of the radar nowcasting and distributed hydrologic models (interpolation and extended-lead forecasting) are proposed and evaluated for flood events within a set of nested basins in Oklahoma. Comparisons of the radar-based forecasts to persistence show the advantages of utilizing radar nowcasting for predicting near-future rainfall during flood event evolution.


2012 ◽  
Vol 16 (11) ◽  
pp. 4375-4386 ◽  
Author(s):  
Y. Tramblay ◽  
R. Bouaicha ◽  
L. Brocca ◽  
W. Dorigo ◽  
C. Bouvier ◽  
...  

Abstract. In northern Morocco are located most of the dams and reservoirs of the country, while this region is affected by severe rainfall events causing floods. To improve the management of the water regulation structures, there is a need to develop rainfall–runoff models to both maximize the storage capacity and reduce the risks caused by floods. In this study, a model is developed to reproduce the flood events for a 655 km2 catchment located upstream of the 6th largest dam in Morocco. Constrained by data availability, a standard event-based model combining a SCS-CN (Soil Conservation Service Curve Number) loss model and a Clark unit hydrograph was developed for hourly discharge simulation using 16 flood events that occurred between 1984 and 2008. The model was found satisfactory to reproduce the runoff and the temporal evolution of floods, even with limited rainfall data. Several antecedent wetness conditions estimators for the catchment were compared with the initial condition of the model. Theses estimators include an antecedent discharge index, an antecedent precipitation index and a continuous daily soil moisture accounting model (SMA), based on precipitation and evapotranspiration. The SMA model performed the best to estimate the initial conditions of the event-based hydrological model (R2 = 0.9). Its daily output has been compared with ASCAT and AMSR-E remote sensing data products, which were both able to reproduce with accuracy the daily simulated soil moisture dynamics at the catchment scale. This same approach could be implemented in other catchments of this region for operational purposes. The results of this study suggest that remote sensing data are potentially useful to estimate the soil moisture conditions in the case of ungauged catchments in Northern Africa.


2021 ◽  
Author(s):  
Caroline Legrand ◽  
Benoît Hingray ◽  
Bruno Wilhelm

<p>Floods are highly destructive natural hazards causing widespread impacts on socio-ecosystems. This hazard could be further amplified with the ongoing climate change, which will likely alter magnitude and frequency of floods. Estimating how flood regimes could change in the future is however not straightforward. The classical approach is to estimate future hydrological regimes from hydrological simulations forced by time series scenarii of weather variables for different future climate scenarii. The development of relevant weather scenarii for this is often critical. To be adapted to the critical space and time scales of the considered basins, weather scenarii are thus typically produced from climate models with downscaling models (either dynamic or statistical).</p><p>In this study, we aim to evaluate the capacity of such a simulation chain to reproduce floods observed in the upper Rhône River (10900 km², European Alps) over the last century. The modeling chain is made up of (i) the atmospheric reanalysis ERA-20C (1900-2010), (ii) the statistical downscaling model Analog, and (iii) the glacio-hydrological model GSM-SOCONT (Glacier and Snowmelt SOil CONTribution model; Schaefli et al., 2005). To assess the performance of this modeling chain, the simulated scenarii of mean areal precipitation and temperature are compared to the observed time series over the common period (1961-2010), whereas the discharge scenarii are compared to the reference time series (1920-2010).</p><p>In this presentation, we will discuss (i) the results obtained by the basic Analog method, namely a flood events underestimation due to an underestimation of extreme precipitation values, in particular 3-day and 5-day extreme precipitation, and (ii) the enhanced results obtained by the improved version of Analog SCAMP (Sequential Constructive Atmospheric Analogues for Multivariate weather Predictions; Raynaud et al., 2020) combined to the Schaake Shuffle method.</p><p>References:</p><p>Schaefli, B., Hingray, B., M. Niggli, M., Musy, A. (2005). A conceptual glacio-hydrological model for high mountainous catchments. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 9, 95-109.</p><p>Raynaud, D., Hingray, B., Evin, G., Favre, A.-C., Chardon, J. (2020). Assessment of meteorological extremes using a synoptic weather generator and a downscaling model based on analogues. Hydrology and Earth System Sciences Discussions, European Geosciences Union, 24(9), 4339-4352.</p>


2015 ◽  
Vol 86 ◽  
pp. 122-131 ◽  
Author(s):  
Sang-Soo Baek ◽  
Dong-Ho Choi ◽  
Jae-Woon Jung ◽  
Hyung-Jin Lee ◽  
Hyuk Lee ◽  
...  

2012 ◽  
Vol 9 (8) ◽  
pp. 9361-9390 ◽  
Author(s):  
Y. Tramblay ◽  
R. Bouaicha ◽  
L. Brocca ◽  
W. Dorigo ◽  
C. Bouvier ◽  
...  

Abstract. In Northern Morocco are located most of the dams and reservoirs of the country, while this region is affected by severe rainfall events causing floods. To improve the management of the water regulation structures, there is a need to develop rainfall-runoff models to both maximize the storage capacity and reduce the risks caused by floods. In this study, a model is developed to reproduce the flood events for a 655 km2 catchment located upstream of the 6th largest dam of the Morocco. Constrained by data availability, a standard event-based model was developed for hourly discharge using 16 flood events that occurred between 1984 and 2008. The model was found satisfactory to reproduce the runoff and the temporal evolution of floods, even with limited rainfall data. Several antecedent wetness conditions estimators for the catchment were compared with the initial condition of the model. These estimators include the discharge of the previous days, the antecedent precipitation index and a continuous daily soil moisture accounting model (SMA). The SMA model performed the best to estimate the initial conditions of the model, with R2=0.9. Its daily output has been compared with ASCAT and AMSR-E remote sensing data products, both were able to reproduce with accuracy the daily soil moisture dynamics at the catchment scale. This same approach could be implemented in other catchments of this region for operational purposes. The results of this study indicate the potential usefulness of remote sensing data to estimate the soil moisture conditions in the case of ungauged catchments in Northern Africa.


Sign in / Sign up

Export Citation Format

Share Document