scholarly journals Effect of 1-methylcyclopropene on the development of black mold disease and its potential effect on alternariol and alternariol monomethyl ether biosynthesis on tomatoes infected with Alternaria alternata

2016 ◽  
Vol 236 ◽  
pp. 74-82 ◽  
Author(s):  
N. Estiarte ◽  
A. Crespo-Sempere ◽  
S. Marín ◽  
V. Sanchis ◽  
A.J. Ramos
1993 ◽  
Vol 56 (3) ◽  
pp. 246-248 ◽  
Author(s):  
V. SANCHIS ◽  
A. SANCLEMENTE ◽  
J. USALL ◽  
I. VIÑAS

The predominant fungal species present in 60 samples of barley collected in Spain were Alternaria alternata, Penicillium spp. and Aspergillus flavus. Of the 176 Alternaria isolates examined, 88.6% produced tenuazonic acid, 15.3% produced alternariol, and 9% produced alternariol monomethyl ether. Only 6% of the 190 isolates of A. flavus produced aflatoxin.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 553 ◽  
Author(s):  
Liuqing Wang ◽  
Nan Jiang ◽  
Duo Wang ◽  
Meng Wang

Alternaria alternata is a critical phytopathogen that causes foodborne spoilage and produces a polyketide mycotoxin, alternariol (AOH), and its derivative, alternariol monomethyl ether (AME). In this study, the inhibitory effects of the essential oil citral on the fungal growth and mycotoxin production of A. alternata were evaluated. Our findings indicated that 0.25 μL/mL (222.5 μg/mL) of citral completely suppressed mycelial growth as the minimum inhibitory concentration (MIC). Moreover, the 1/2MIC of citral could inhibit more than 97% of the mycotoxin amount. Transcriptomic profiling was performed by comparative RNA-Seq analysis of A. alternata with or without citral treatment. Out of a total of 1334 differentially expressed genes (DEGs), 621 up-regulated and 713 down-regulated genes were identified under citral stress conditions. Numerous DEGs for cell survival, involved in ribosome and nucleolus biogenesis, RNA processing and metabolic processes, and protein processing, were highly expressed in response to citral. However, a number of DEGs responsible for the metabolism of several carbohydrates and amino acids, sulfate and glutathione metabolism, the metabolism of xenobiotics and transporter activity were significantly more likely to be down-regulated. Citral induced the disturbance of cell integrity through the disorder of gene expression, which was further confirmed by the fact that exposure to citral caused irreversibly deleterious disruption of fungal spores and the inhibition of ergosterol biosynthesis. Citral perturbed the balance of oxidative stress, which was likewise verified by a reduction of total antioxidative capacity. In addition, citral was able to modulate the down-regulation of mycotoxin biosynthetic genes, including pksI and omtI. The results provide new insights for exploring inhibitory mechanisms and indicate citral as a potential antifungal and antimytoxigenic alternative for cereal storage.


1997 ◽  
Vol 48 (8) ◽  
pp. 1249 ◽  
Author(s):  
D. J. Webley ◽  
K. L. Jackson ◽  
J. D. Mullins ◽  
A. D. Hocking ◽  
J. I. Pitt

Weather-damaged wheat from northern New South Wales in 1995-96 was heavily infected with the fungus Alternaria alternata. The mycotoxins tenuazonic acid, alternariol, and alternariol monomethyl ether were detected at low levels which corresponded with the degree of A. alternata infection and the geographical location. Sorghum and undamaged wheat from the same region also showed moderate levels of A. alternata infection and low levels of tenuazonic acid but none of the other toxins. These mycotoxins were not found in weather-damaged wheat from other areas of Australia where the primary infection was by A. infectoria rather than A. alternata.


1996 ◽  
Vol 42 (7) ◽  
pp. 685-689 ◽  
Author(s):  
Birgitte Andersen ◽  
Ulf Thrane

Some small-spored species belonging to the genus Alternaria Nees have been studied according to their chemical, morphological, and cultural characteristics. A data matrix was constructed based on a combination of characters. Cluster analysis of the combined data set showed good resolution of two groups of small-spored Alternaria: the Alternaria infectoria group and the Alternaria alternata group. Isolates in the A. infectoria group produced only unique metabolites of unknown identity, whereas all isolates in the A. alternata group produced alternariol and alternariol monomethyl ether. Furthermore, the analysis showed that the A. alternata group and A. infectoria group each could be subdivided into three groups. The colour of fungal colonies on dichloran rose bengal yeast extract sucrose agar was another useful character to differentiate between the A. infectoria and A. alternata groups.Key words: Alternaria infectoria, Alternaria alternata, secondary metabolites, cluster analysis.


1993 ◽  
Vol 71 (1) ◽  
pp. 155-160 ◽  
Author(s):  
Hamed K. Abbas ◽  
R. F. Vesonder ◽  
C. D. Boyette ◽  
S. W. Peterson

Nine isolates of Alternaria alternata were obtained from infected tomato (cv. Beefsteak) plants. Each isolate was grown on autoclaved rice medium and corn meal agar medium and evaluated for pathogenesis and phytotoxicity to jimsonweed plants. Only A. alternata SWSL 1 (NRRL 18822) caused lodging on 1-week-old jimsonweed plants when sprayed at a rate of 20 g of fungus-infested rice per 100 mL distilled water. The symptoms began within 24 to 48 h following inoculation, and all plants were dead after 96 h. Treatment of 2-week-old jimsonweed plants in the same manner affected growth only. No symptoms occurred when SWSL 1 spores from corn meal agar were applied to jimsonweed at a rate of 2 × 107 spores/mL, with or without dew. The filtrates of fungus-infested rice of the SWSL 1 isolate were found to contain the following phytotoxins: AAL-toxin (100 μg/g), tenuazonic acid (10 μg/g), and alternariol monomethyl ether (580 μg/g). Crude and cell-free filtrates and AAL-toxin (concentration 200 μg/mL) caused similar damage on excised leaves, characterized by soft rot diffusing from the point of inoculation along the veins, adaxially or abaxially to leaves. Alternariol monomethyl ether (concentration 800 μg/mL) and tenuazonic acid (concentration 420 μg/mL) applied to excised jimsonweed leaves caused no visible damage. In intact plants, symptoms resulting from the crude filtrate, cell-free filtrate, and the AAL-toxin were identical. A dose–response study of AAL-toxin on excised jimsonweed and black nightshade (Solanum nigrum L.) leaves showed effects at concentrations of 1.56 μg/mL and 0.01 μg/mL, respectively. This is the first report of phytotoxicity of AAL-toxin to these two weeds and it may have potential as a weed control agent. Key words: weed, natural products, solid media, fungi.


Toxins ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 665
Author(s):  
Liuqing Wang ◽  
Duo Wang ◽  
Shuzhi Yuan ◽  
Xiaoyuan Feng ◽  
Meng Wang

Alternaria alternata is an important phytopathogen causing fruit black rot and also producing a variety of mycotoxins, such as alternariol (AOH) and alternariol monomethyl ether (AME) as two main contaminants. This could lead to economic losses of agricultural products as well as human health risks. In this study, magnolol extracted from the traditional Chinese herb, Mangnolia officinalis, exhibited an obvious antifungal property and could completely suppress the mycelial growth at 100 μM. Morphological differences of A. alternata were observed to be significantly shrunk and wrinkled after the exposure to magnolol. Furthermore, AOH and AME were no longer produced in response to 50 μM of magnolol. To uncover the antifungal and antimycotoxigenic mechanisms, the transcriptomic profiles of A. alternata—treated with or without magnolol—were evaluated. The clustered genes responsible for AOH and AME biosynthesis were obviously less transcribed under magnolol stress and this was further confirmed by qRT-PCR. The global regulators of carbon and nitrogen utilization, such as CreA and NmrA, were significantly down-regulated and this possibly caused the reduction in mycotoxins. In addition, fatty acid β-oxidation was regarded to contribute to polyketide mycotoxin production for the supply of precursor acetyl-CoA while the expression of these related genes was inhibited. The response to magnolol led to the marked alteration of oxidative stress and the down-expression of the mitogen-activated protein kinase (MAPK) signaling pathway from the transcriptome data and the determination of peroxidase (POD), superoxide dismutase (SOD) and glutathione (GSH) assays. This above might be the very reason for the growth supression and mycotoxin production of A. alternata by magnolol. This study provides new insights into its potential as an important active ingredient for the control of A. alternata and its mycotoxins in fruits and their products.


1995 ◽  
Vol 58 (10) ◽  
pp. 1133-1134 ◽  
Author(s):  
SOFÍA N. CHULZE ◽  
ADRIANA M. TORRES ◽  
ANA M. DALCERO ◽  
MIRIAM G. ETCHEVERRY ◽  
MARÍA L. RAMÍREZ ◽  
...  

A survey of 150 sunflower-seed samples was carried out to evaluate the contamination from infection with Alternaria alternata with alternariol (AOH), alternariol monomethyl ether (AME) and tenuazonic acid (TA). A high percentage of the samples was contaminated with AOH (85%), AME, (47%), and TA (65%). The average levels detected were 187 μg/kg for AOH, 194 μg/kg for AME, and 6,692, μg/kg for TA. When sunflower seeds fermented by Alternaria alternata were processed under laboratory conditions to obtain the oil and meal, different distributions of Alternaria toxins between the oil and the meal were observed: whereas AOH, AME, and TA were detected in the meal, only AME and TA were detected in the oil, and the latter in a low percentage.


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Hai D. T. Nguyen ◽  
Christopher T. Lewis ◽  
C. André Lévesque ◽  
Tom Gräfenhan

We report the draft genome sequence ofAlternaria alternataATCC 34957. This strain was previously reported to produce alternariol and alternariol monomethyl ether on weathered grain sorghum. The genome was sequenced with PacBio technology and assembled into 27 scaffolds with a total genome size of 33.5 Mb.


Sign in / Sign up

Export Citation Format

Share Document