Coagulation kernel of particles in a turbulent gas flow

2007 ◽  
Vol 50 (7-8) ◽  
pp. 1368-1387 ◽  
Author(s):  
I.V. Derevich
Author(s):  
Kyohei Isobe ◽  
Chungpyo Hong ◽  
Yutaka Asako ◽  
Ichiro Ueno

Numerical simulations were performed to obtain for heat transfer characteristics of turbulent gas flow in micro-tubes with constant wall temperature. The numerical methodology was based on Arbitrary-Lagrangian-Eulerinan (ALE) method to solve compressible momentum and energy equations. The Lam-Bremhorst Low-Reynolds number turbulence model was employed to evaluate eddy viscosity coefficient and turbulence energy. The tube diameter ranges from 100 μm to 400 μm and the aspect ratio of the tube diameter and the length is fixed at 200. The stagnation temperature is fixed at 300 K and the computations were done for wall temperature, which ranges from 305 K to 350 K. The stagnation pressure was chosen in such a way that the flow is in turbulent flow regime. The obtained Reynolds number ranges widely up to 10081 and the Mach number at the outlet ranges from 0.1 to 0.9. The heat transfer rates obtained by the present study are higher than those of the incompressible flow. This is due to the additional heat transfer near the micro-tube outlet caused by the energy conversion into kinetic energy.


2021 ◽  
Vol 2 (446) ◽  
pp. 99-104
Author(s):  
S.R. Rasulov ◽  
G.R. Mustafayeva

This scientific article is devoted to the problems associated with the flow of suspensions and emulsions and some simplifications of the real picture of the flow of a polydisperse medium are made. It is also stipulated that differential equations characterizing the motion of suspensions and emulsions should take into account the fundamental discontinuity of the medium and the physicochemical processes of heat and mass transfer occurring in it. Taking into account all these factors, a general equation for multiphase systems is proposed with certain simplifications that do not change. The behavior of particles in two-phase systems, their concentration, collision and coagulation are considered. As a result, it was concluded that there is a multifactorial interaction and mutual influence of both phases in a dispersed flow. A differential equation of motion of a single i-th spherical particle in suspension was proposed, and an equation describing the drag force of a solid spherical particles. Equations of conservation of mass and momentum are presented for one-dimensional laminar motion of two incompressible phases in a gravity field with the same pressure in the phases. Having studied the parameters of the flow of fine particles in a turbulent gas flow, some assumptions were made. It was found that the pulsating motion of particles, performed by them during one period of gas pulsations, can be represented as a change in the pulsating gas velocity in time. The parameter of entrainment of particles by a pulsating medium is an important characteristic in determining the transport coefficients in a turbulent flow. It is concluded that the presence of various kinds of particles in the liquid complicates the problem of solving hydromechanical problems in turbulent and laminar flow, and the assumptions given in the work facilitate the study of this problem.


1969 ◽  
Vol 16 (4) ◽  
pp. 400-403 ◽  
Author(s):  
V. M. Buznik ◽  
Z. I. Geller ◽  
A. K. Pimenov

2019 ◽  
Vol 213 ◽  
pp. 02011
Author(s):  
Jan Česenek

The article is concerned with the numerical simulation of the compressible turbulent gas flow through the porous media using space-time discontinuous Galerkin method.The mathematical model of flow is represented by the system of non-stationary Reynolds-Averaged Navier-Stokes (RANS) equations. The flow through the porous media is characterized by the loss of momentum. This RANS system is equipped with two-equation k-omega turbulence model. The discretization of these two systems is carried out separately by the space-time discontinuous Galerkin method. This method is based on the piecewise polynomial discontinuous approximation of the sought solution in space and in time. We present some numerical experiments to demonstrate the applicability of the method using own-developed code.


2010 ◽  
Vol 2010 (0) ◽  
pp. 253-254
Author(s):  
Kyohei ISOBE ◽  
Chungpyo HONG ◽  
Ichiro UENO ◽  
Yutaka ASAKO ◽  
Koichi SUZUKI

Sign in / Sign up

Export Citation Format

Share Document