scholarly journals Parametric study on thermal and hydraulic characteristics of laminar flow in microchannel heat sink with fan-shaped ribs on sidewalls – Part 2: Pressure drop

Author(s):  
Lei Chai ◽  
Guo Dong Xia ◽  
Hua Sheng Wang
Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


Author(s):  
Suchismita Sarangi ◽  
Karthik K. Bodla ◽  
Suresh V. Garimella ◽  
Jayathi Y. Murthy

Conventional microchannel heat sinks provide good heat dissipation capability but are associated with high pressure drop and corresponding pumping power. The use of a manifold system that distributes the flow into the microchannels through multiple, alternating inlet and outlet pairs is investigated here. This manifold arrangement greatly reduces the pressure drop incurred due to the smaller flow paths, while simultaneously increasing the heat transfer coefficient by tripping the thermal boundary layers. A three-dimensional numerical model is developed and validated, to study the effect of various geometric parameters on the performance of the manifold microchannel heat sink. Apart from a deterministic analysis, a probabilistic optimization study is also performed. In the presence of uncertainties in the geometric and operating parameters of the system, this probabilistic optimization approach yields an optimal design that is also robust and reliable. Uncertainty-based optimization also yields auxiliary information regarding local and global sensitivities and helps identify the input parameters to which outputs are most sensitive. This information can be used to design improved experiments targeted at the most sensitive inputs. Optimization under uncertainty also provides a quantitative estimate of the allowable uncertainty in input parameters for an acceptable uncertainty in the relevant output parameters. The optimal geometric design parameters with uncertainties that maximize heat transfer coefficient while minimizing pressure drop for fixed input conditions are identified for a manifold microchannel heat sink. A comparison between the deterministic and probabilistic optimization results is also presented.


2016 ◽  
Vol 819 ◽  
pp. 127-131
Author(s):  
Navin Raja Kuppusamy ◽  
N.N.N. Ghazali ◽  
Saidur Rahman ◽  
M.A. Omar Awang ◽  
Hussein A. Mohammed

The present study focuses on the numerical study of thermal and flow characteristics in a microchannel heat sink with alternating trapezoidal cavities in sidewall (MTCS). The effects of flow rate and heat flux on friction factor and Nusselt are presented. The results showed considerable improvement heat transfer performance micro channel heat sink with alternating trapezoidal cavities in sidewall with an acceptable pressure drop. The heat transfer rate has improved in the cavity area due the greater fluid mixing in fluid vortices and thermal boundary layer disruption. The slipping over the reentrant cavities and pressure gain reduces pressure drop appears as the reason behind of only minor pressure drop due to the cavities.


2011 ◽  
Vol 8 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Pradeep Hegde ◽  
Mukesh Patil ◽  
K. N. Seetharamu

Thermal performance of a water cooled multistack microchannel heat sink with counterflow arrangement has been analyzed using the finite element method. Performance parameters such as thermal resistance, pressure drop, and pumping power are computed for a typical counterflow heat sink with different number of stacks. The temperature distribution in a typical multistack counterflow microchannel heat sink is obtained for different numbers of stacks and plotted along the channel length. A parametric study involving the effects of number of stacks and channel aspect ratio on thermal resistance and pressure drop of the heat sink is done. The finite element model developed for the analysis is simple and consumes less computational time.


Author(s):  
Parisa Vaziee ◽  
Omid Abouali

Effectiveness of the microchannel heat sink cooled by nanofluids with various particle volume fractions is investigated numerically using the latest theoretical models for conductivity and viscosity of the nanofluids. Both laminar and turbulent flows are considered in this research. The model of conductivity used in this research accounts for the fundamental role of Brownian motion of the nanoparticles which is in good agreement with the experimental data. The changes in viscosity of the nanofluid due to temperature variation are considered also. Final results are compared with the experimental measurements for heat transfer coefficient and pressure drop in microchannel. Enhancement in heat transfer is achieved for laminar flow with increasing of volume fraction of Al2O3 nanoparticles. But for turbulent flow an enhancement of heat removal was not seen and using higher volume fractions of nanoparticles increases the maximum substrate temperature. Pressure drop is increased with using nanofluids because of the augmentation in the viscosity and this increase is more noticeable in higher Reynolds numbers.


Sign in / Sign up

Export Citation Format

Share Document