scholarly journals A conjugate heat transfer model for unconstrained melting of macroencapsulated phase change materials subjected to external convection

Author(s):  
Daniel Hummel ◽  
Stefan Beer ◽  
Andreas Hornung
Energy ◽  
2019 ◽  
Vol 168 ◽  
pp. 222-234 ◽  
Author(s):  
Yu Bie ◽  
Ming Li ◽  
Fei Chen ◽  
Grzegorz Królczyk ◽  
Lin Yang ◽  
...  

Author(s):  
Johnathon P. Putrus ◽  
Stanley T. Jones ◽  
Badih A. Jawad ◽  
Giscard Kfoury ◽  
Selin Arslan ◽  
...  

Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. Latent heat energy storage systems that utilize Phase Change Materials (PCMs) present an effective way of storing thermal energy and offer key advantages such as high-energy storage density, high heat of fusion values, and greater stability in temperature control. Military vehicles frequently undergo high-transient thermal loads and often do not provide adequate cooling for powertrain subsystems. This work outlines an approach to temporarily store excess heat generated by the transmission during high tractive effort situations through the use of a passive PCM retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating. A numerical heat transfer model has been developed based on a conceptual vehicle transmission TMS. The model predicts the transmission fluid temperature response with and without a PCM retrofit. The developed model captures the physics of the phase change processes to predict the transient heat absorption and rejection processes. It will be used to evaluate the effectiveness of proposed candidate implementations and provide input for TMS evaluations. Parametric studies of the heat transfer model have been conducted to establish desirable structural morphologies and PCM thermophysical properties. Key parameters include surface structural characteristics, conduction enhancing material, surface area, and PCM properties such as melt temperature, heat of fusion, and thermal conductivity. To demonstrate proof-of-concept, a passive PCM enclosure has been designed to be integrated between a transmission bell housing and torque converter. This PCM-augmented module will temporarily strategically absorb and release heat from the system at a controlled rate. This allows surging fluid temperatures to be clamped below the maximum effective fluid temperature rating thereby increasing component life, reliability, and performance. This work outlines cooling system boundary conditions, mobility/thermal loads, model details, enclosure design characteristics, potential PCM candidates, design considerations, performance data, cooling system impacts, conclusions, and potential future work.


2014 ◽  
Vol 1077 ◽  
pp. 118-123 ◽  
Author(s):  
Lubomír Klimeš ◽  
Pavel Charvát ◽  
Milan Ostrý ◽  
Josef Stetina

Phase change materials have a wide range of application including thermal energy storage in building structures, solar air collectors, heat storage units and exchangers. Such applications often utilize a commercially produced phase change material enclosed in a thin panel (container) made of aluminum. A parallel 1D heat transfer model of a container with phase change material was developed by means of the control volume and effective heat capacity methods. The parallel implementation in the CUDA computing architecture allows the model for running on graphics processing units which makes the model very fast in comparison to traditional models computed on a single CPU. The paper presents the model implementation and results of computational model benchmarking carried out with the use of high-level and low-level GPUs NVIDIA.


Author(s):  
Hongmin Li ◽  
Edward A. Evans ◽  
G.-X. Wang

Numerical modeling becomes an important technique to study hydrothermal crystal growth since experimental measurements in hydrothermal autoclaves are extremely difficult due to the high pressure and high temperature growth conditions. In all existing models for hydrothermal growth, isothermal boundary conditions are assumed, although electric heaters are employed around the outside surface of the thick autoclave wall in practice. In this paper, a conjugate heat transfer model based on an industry size autoclave is developed to investigate the validity of such an assumption. The model includes not only turbulent fluid flow and heat transfer of the solution but also the heat conduction in the thick wall. The outside surfaces of the wall are under constant heat flux conditions, simulating electric resistance heating used in practice. Non-uniformity of the heat flux in the circumferential direction is also introduced in the model. The results indicate that the temperature at the solution/wall interface is far away from uniform. The isothermal wall boundary condition in previous efforts is questionable. Predictions of the isothermal wall model are analyzed. Parametric studies with the conjugate model show that total heat supply rate does not affect vertical uniformity dramatically. Heat loss can be lowered without affecting the flow and temperature fields if heaters are put half diameter or further away from the middle height (baffle) plane.


Author(s):  
Liang Peng ◽  
Zhenlei Chen ◽  
Yi Hu

Aiming at the issues of low accuracy and poor feasibility of the analytical results of the turbocharger turbine temperature field under operating conditions, a full-domain conjugate heat transfer numerical model was established by the conjugate heat transfer and finite volume method. The temperature field characteristics of each component of the turbocharger turbine were analyzed. The numerical and experimental test results were compared and analyzed. The global conjugate heat transfer model avoids the input of a large number of hypothetical data on the interface between fluid and solid in the traditional model, and makes the calculation process closer to the actual situation. Through the comparison with the experimental results, the accuracy of the turbine temperature field obtained by the global conjugate heat transfer model is more reasonable and more accurate than that of the traditional model, which verifies the reliability and accuracy of the global conjugate heat transfer model.


Sign in / Sign up

Export Citation Format

Share Document