An advanced conduction based heat pipe model accounting for vapor pressure drop

Author(s):  
Sascha Zimmermann ◽  
Robert Dreiling ◽  
Thinh Nguyen-Xuan ◽  
Michael Pfitzner
Author(s):  
Imène Saad ◽  
Samah Maalej ◽  
Mohamed Chaker Zaghdoudi

The present work highlights the impact of the working dielectric fluid on the flow and the thermal parameters of an axially grooved flat mini heat pipe (FMHP) submitted to Electrohydrodynamic (EHD) effects. Three dielectric working fluids are considered: pentane, R123, and R141b. A model is developed by considering the Laplace-Young, mass, momentum, and energy balance equations. The numerical results show that the electric field affects the liquid distribution along the heat pipe and helps the condensate to flow back to the evaporator section. Moreover, under the electric field conditions, the vapor pressure drop increases, however, the liquid pressure drop decreases. The effect of the electric field on the liquid velocity depends on the FMHP zone, and the vapor velocity is hardly affected by the EHD effects. Furthermore, lower capillary driving pressures are required to provide the necessary capillary pumping under EHD conditions. Besides, pentane allows for higher vapor pressure drops compared to those obtained with R123 and R141b, while the liquid pressure drops are highest for R123. It is found that with R123, the liquid velocity is higher than that reached with R141b and pentane. It is also demonstrated that the capillary limit increases under EHD conditions, and for R141b, the capillary limit is the highest either in zero-field and EHD conditions. Best heat pipe thermal performances are observed for wide and deep grooves with R141b. Finally, the optimum fill charge allowing the maximum heat transfer capacity is determined for each working fluid and different groove dimensions. It is shown that the optimum fill charge is hardly affected by the electric field whatever the working fluid. R123 requires the highest optimum fill charge, however, the heat transport capacity of the FMHP is the lowest when using this working fluid.


Author(s):  
Jian-Hong Liu ◽  
Fu-Min Shang ◽  
Nikolay Efimov

Abstract Numerical simulation was performed to establishing a two-dimensional pulsating heat pipe model, to investigate the flow and heat transfer characteristics in the pulsating heat pipe by using the Mixture and Euler models, which were unsteady models of vapor-liquid two-phase, based on the control-volume numerical procedure utilizing the semi-implicit method. Through comparing and analyzing the volume fraction and velocity magnitude of gas phase to decide which model was more suitable for numerical simulation of the pulsating heat pipe in heat and mass transfer research. It was showed there had gas phase forming in stable circulation flow in the heating section, the adiabatic section using the Mixture and Euler models respectively, and they were all in a fluctuating state at 10s, besides, the pulsating heat pipe had been starting up at 1s and stabilizing at 5s, it was all found that small bubbles in the heat pipe coalescing into large bubbles and gradually forming into liquid plugs and gas columns from the contours of volume fraction of the gas phase; through comparing the contours of gas phase velocity, it could be seen that there had further stably oscillating flow and relatively stabler gas-liquid two-phase running speed in the pulsating heat pipe used the Mixture model, the result was consistent with the conclusion of the paper[11] extremely, from this it could conclude that the Mixture model could be better simulate the vaporization-condensation process in the pulsating heat pipe, which could provide an effective theoretical support for further understanding and studying the phase change heat and mass transfer mechanism of the pulsating heat pipe.


2005 ◽  
Author(s):  
Tien-Chien Jen ◽  
Quan Liao ◽  
Qinghua Chen ◽  
Longjian Li ◽  
Wenzhi Cui

It is well known that drilling is one of the most difficult metalwork cutting operations, not only from the viewpoint of manufacturing process, but also from the thermal management point of view of the drill. For the drilling process, due to its long time continuous metal-to-metal friction between drill tip edge and work piece, a significant amount of heat is generated on the interface, which is in a confined space compared to other machining processes, such as cutting or milling. This makes it very difficult to keep the temperature of drill tip under a certain but acceptable range since the coolant is unable to penetrate deep enough into the hole. Also, based on the environmental considerations and the cost reduction requirement, the conventional flooding coolant method become highly inefficient and expensive due to high maintenance costs. A new approach, dry drilling method (i.e., no coolant is employed during the drilling process) is investigated in this study. In dry drilling, we used heat pipe technology to accomplish the goal of efficient heat removal from the drill tip. It is heat pipe’s unique and excellent advantages such as, high reliability, supreme equivalent thermal conductivity, flexible adaptability and so forth, that make it possible for dry drilling by combining the drill and heat pipe. From the numerical simulation viewpoint of heat pipe drill, how to correctly model the heat pipe in the drill is one of the crucial tasks because it will directly influence the accuracy of the simulation results. So far, there are few different kinds of simulation models for heat pipe drill and each of them works well in some kinds of special situations. The present paper studied and compared these different simulation models of heat pipe and then proposed a general, simple but robust and more accurate approach to simulate the heat transfer process in the heat pipe drill. Furthermore, this kind of the heat pipe model can be used in many other heat pipe applications.


1999 ◽  
Author(s):  
K. R. Wrenn ◽  
S. J. Krein ◽  
T. T. Hoang ◽  
R. D. Allen
Keyword(s):  

Author(s):  
Mahboobe Mahdavi ◽  
Amir Faghri

Abstract In the present works, a comprehensive transient numerical model was developed to evaluate the effect of nanofluid on the transient performance of heat pipes. The numerical model solves for compressible vapor flow, the liquid flow in the wick region, and the energy equations in the vapor, wick and wall. The distinctive feature of the model is that it can uniquely determine the heat pipe operating pressure based on the physical and operating conditions of the system. Three nanoparticle types were considered: Al2O3, CuO, and TiO2. The effects of the concentration of nanoparticles (5%, 10%, 20% and 40%) were investigated on the heat pipe response time, thermal resistance, and pressure drop under various operating conditions. The results showed that the use of nanofluid decreased the response time of the heat pipe by the maximum of 27%. It was also discovered that the thermal resistance decreased significantly with an increase in the volume concentration. A maximum reduction of 84%, 82% and 78% in thermal resistance was obtained for Al2O3, CuO, and TiO2, respectively. In addition, the effect of nanoparticles on the liquid pressure drop highly depends on the nanoparticle type and volume concentration.


Sign in / Sign up

Export Citation Format

Share Document