Influence of transient operating conditions on pressure-concentration isotherms and storage characteristics of hydriding alloys

2007 ◽  
Vol 32 (13) ◽  
pp. 2382-2389 ◽  
Author(s):  
E ANILKUMAR ◽  
M PRAKASHMAIYA ◽  
S SRINIVASAMURTHY
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Meku Maruyama ◽  
Riku Matsuura ◽  
Ryo Ohmura

AbstractHydrate-based gas separation technology is applicable to the CO2 capture and storage from synthesis gas mixture generated through gasification of fuel sources including biomass. This paper reports visual observations of crystal growth dynamics and crystal morphology of hydrate formed in the H2 + CO2 + tetrahydropyran (THP) + water system with a target for developing the hydrate-based CO2 separation process design. Experiments were conducted at a temperature range of 279.5–284.9 K under the pressure of 4.9–5.3 MPa. To simulate the synthesis gas, gas composition in the gas phase was maintained around H2:CO2 = 0.6:0.4 in mole fraction. Hydrate crystals were formed and extended along the THP/water interface. After the complete coverage of the interface to shape a polycrystalline shell, hydrate crystals continued to grow further into the bulk of liquid water. The individual crystals were identified as hexagonal, tetragonal and other polygonal-shaped formations. The crystal growth rate and the crystal size varied depending on thermodynamic conditions. Implications from the obtained results for the arrangement of operating conditions at the hydrate formation-, transportation-, and dissociation processes are discussed.


2019 ◽  
Vol 113 ◽  
pp. 02017
Author(s):  
Mariagiovanna Minutillo ◽  
Alessandra Perna ◽  
Alessandro Sorce

This paper focuses on a biofuel-based Multi-Energy System generating electricity, heat and hydrogen. The proposed system, that is conceived as refit option for an existing anaerobic digester plant in which the biomass is converted to biogas, consists of: i) a fuel processing unit, ii) a power production unit based on the SOFC (Solid Oxide Fuel Cell) technology, iii) a hydrogen separation, compression and storage unit. The aim of this study is to define the operating conditions that allow optimizing the plant performances by applying the exergy analysis that is an appropriate technique to assess and rank the irreversibility sources in energy processes. Thus, the exergy analysis has been performed for both the overall plant and main plant components and the main contributors to the overall losses have been evaluated. Moreover, the first principle efficiency and the second principle efficiency have been estimated. Results have highlighted that the fuel processor (the Auto-Thermal Reforming reactor) is the main contributor to the global exergy destruction (9.74% of the input biogas exergy). In terms of overall system performance the plant has an exergetic efficiency of 53.1% (it is equal to 37.7% for the H2 production).


2015 ◽  
Vol 42 (4-6) ◽  
pp. 107-114 ◽  
Author(s):  
Abhishek Nandan Bakshi ◽  
Arif Ali Baig Moghal ◽  
Niyaz Ahamad Madhar ◽  
Satyanarayan Patel ◽  
Rahul Vaish

Sign in / Sign up

Export Citation Format

Share Document