One-step electroless deposition of Pd/Pt bimetallic microstructures by galvanic replacement on copper substrate and investigation of its performance for the hydrogen evolution reaction

2013 ◽  
Vol 38 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Reza Ojani ◽  
Jahan Bakhsh Raoof ◽  
Ehteram Hasheminejad
2021 ◽  
Author(s):  
Zihao Liu ◽  
Shifeng Li ◽  
Fangfang Wang ◽  
Mingxia Li ◽  
Yonghong Ni

FeNi-layered double hydroxide (LDH) is thought to be an excellent electrocatalyst for oxygen evolution reaction (OER), but it always shows extremely poor electrocatalytic activity toward hydrogen evolution reaction (HER) in...


2010 ◽  
Vol 25 (10) ◽  
pp. 2001-2007 ◽  
Author(s):  
Sheng-Chieh Lin ◽  
Yu-Fan Chiu ◽  
Pu-Wei Wu ◽  
Yi-Fan Hsieh ◽  
Cheng-Yeou Wu

We fabricated a nanostructured brush by carrying out Ni deposition on a through-channel anodic aluminum oxide (AAO) template, followed by removal of the AAO skeleton. The AAO was prepared by a two-step anodization process resulting in pore diameter and thickness of 350 nm and 40 μm, respectively. Subsequently, the AAO underwent an electroless deposition involving sensitization, activation, and Ni plating, in conjunction with polyethylene glycol used as the inhibitor to prevent premature closing of pore opening. After deliberate control in relevant parameters, we obtained a conformal Ni overcoat along every pore channel leading to a reduced average pore diameter of 78 nm. Afterward, the sample was immersed in a KOH solution to remove the AAO structure, forming freestanding Ni tubules in a brush configuration. The nanostructured brush revealed considerable enhancement for hydrogen evolution reaction in both current-potential polarization and galvanostatic measurements, which were attributed to the increment in apparent surface area.


2022 ◽  
Author(s):  
Jianmin Zhu ◽  
Lishuang Xu ◽  
Shuai Zhang ◽  
Ying Yang ◽  
Licheng Huang ◽  
...  

One-step hydrothermal method to synthesize a stable ZnCo2(OH)F nanorod array structure supported by nickel foam.


2021 ◽  
Author(s):  
He-qiang Chang ◽  
Guo-Hua Zhang ◽  
Kuo-Chih Chou

Abstract In order to evaluate the effect of precursors and synthesis strategies on catalytic ability of Mo2C in the hydrogen evolution reaction (HER), four kinds of Mo2C were synthesized using two kinds of MoO3 by two strategies. Compared with the one-step direct carbonization strategy, Mo2C with a large special surface area and a better performance could be synthesized by the two-step strategy composed of a nitridation reaction and a carbonization reaction. Additionally, the as-prepared porous Mo2C nanobelts (NBs) exhibit good electrocatalytic performance with a small overpotential of 165 mV (0.5 M H2SO4) and 124 mV (1 M KOH) at 10 mA cm-2, as well as a Tafel slope of 58 mV dec-1 (0.5 M H2SO4) and 59 mV dec-1 (1 M KOH). The excellent catalytic activity is ascribed to the nano crystallites and porous structure. What’s more, the belt structure also facilitates the charge transport in the materials during the electrocatalytic HER process. Therefore, the two-step strategy provides a new insight into the structural design with superior performance for electrocatalytic HER.


2019 ◽  
Vol 7 (39) ◽  
pp. 22405-22411 ◽  
Author(s):  
Min Wang ◽  
Li Zhang ◽  
Meirong Huang ◽  
Qifan Zhang ◽  
Xuanliang Zhao ◽  
...  

A tungsten disulfide film with a hierarchical structure is synthesized by surface-assisted chemical vapor transport method and applied as a self-supported electrode for the hydrogen evolution reaction, showing superior electrocatalytic performance.


Sign in / Sign up

Export Citation Format

Share Document