Hydrogen as a long-term, large-scale energy storage solution when coupled with renewable energy sources or grids with dynamic electricity pricing schemes

2020 ◽  
Vol 45 (33) ◽  
pp. 16311-16325 ◽  
Author(s):  
Ahmad Mayyas ◽  
Max Wei ◽  
Gregorio Levis
2021 ◽  
Vol 11 (11) ◽  
pp. 4728
Author(s):  
David Evans ◽  
Daniel Parkes ◽  
Mark Dooner ◽  
Paul Williamson ◽  
John Williams ◽  
...  

The increasing integration of large-scale electricity generation from renewable energy sources in the grid requires support through cheap, reliable, and accessible bulk energy storage technologies, delivering large amounts of electricity both quickly and over extended periods. Compressed air energy storage (CAES) represents such a storage option, with three commercial facilities using salt caverns for storage operational in Germany, the US, and Canada, with CAES now being actively considered in many countries. Massively bedded halite deposits exist in the UK and already host, or are considered for, solution-mined underground gas storage (UGS) caverns. We have assessed those with proven UGS potential for CAES purposes, using a tool developed during the EPSRC-funded IMAGES project, equations for which were validated using operational data from the Huntorf CAES plant. From a calculated total theoretical ‘static’ (one-fill) storage capacity exceeding that of UK electricity demand of ≈300 TWh in 2018, filtering of results suggests a minimum of several tens of TWh exergy storage in salt caverns, which when co-located with renewable energy sources, or connected to the grid for off-peak electricity, offers significant storage contributions to support the UK electricity grid and decarbonisation efforts.


2020 ◽  
Vol 1 (2) ◽  
pp. 189-193
Author(s):  
Aisha Naiga ◽  
Loyola Rwabose Karobwa

Over 90% of Uganda's power is generated from renewable sources. Standardised Implementation Agreements and Power Purchase Agreements create a long-term relationship between Generating Companies and the state-owned off-taker guaranteed by Government. The COVID-19 pandemic and measures to curb the spread of the virus have triggered the scrutiny and application of force majeure (FM) clauses in these agreements. This article reviews the FM clauses and considers their relevance. The authors submit that FM clauses are a useful commercial tool for achieving energy justice by ensuring the continuity of the project, despite the dire effects of the pandemic. Proposals are made for practical considerations for a post-COVID-19 future which provides the continued pursuit of policy goals of promoting renewable energy sources and increasing access to clean energy, thus accelerating just energy transitions.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3296
Author(s):  
Carlos García-Santacruz ◽  
Luis Galván ◽  
Juan M. Carrasco ◽  
Eduardo Galván

Energy storage systems are expected to play a fundamental part in the integration of increasing renewable energy sources into the electric system. They are already used in power plants for different purposes, such as absorbing the effect of intermittent energy sources or providing ancillary services. For this reason, it is imperative to research managing and sizing methods that make power plants with storage viable and profitable projects. In this paper, a managing method is presented, where particle swarm optimisation is used to reach maximum profits. This method is compared to expert systems, proving that the former achieves better results, while respecting similar rules. The paper further presents a sizing method which uses the previous one to make the power plant as profitable as possible. Finally, both methods are tested through simulations to show their potential.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 903 ◽  
Author(s):  
Ivan Trifonov ◽  
Dmitry Trukhan ◽  
Yury Koshlich ◽  
Valeriy Prasolov ◽  
Beata Ślusarczyk

In this study we aimed to determine the extent to which changes in the share of renewable energy sources, their structural complex, and the level of energy security in Eastern Europe, Caucasus and Central Asia (EECCA) countries in the medium- and long-term are interconnected. The study was performed through modeling and determination of the structural characteristics of energy security in the countries. The methodology of the approach to modeling was based on solving the problem of nonlinear optimization by selecting a certain scenario. For the study, the data of EECCA countries were used. The ability of EECCA countries to benefit from long-term indirect and induced advantages of the transformation period depends on the extent to which their domestic supply chains facilitate the deployment of energy transformation and induced economic activity. This study provides an opportunity to assess the degree of influence of renewable energy sources on the level of energy security of countries in the context of energy resource diversification. The high degree of influence of renewable energy sources on energy security in the EECCA countries has been proven in the implementation of the developed scenarios for its increase. Energy security is growing. At the same time, its level depends not only on an increase in the share of renewable sources but also on the structure of energy resources complex of countries, and the development of various renewable energy sources. Therefore, today the EECCA countries are forced not only to increase the share of renewable energy sources but also to attach strategic importance to the structural content of their energy complex.


Sign in / Sign up

Export Citation Format

Share Document