scholarly journals Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell

Author(s):  
Andri Sokka ◽  
Marek Mooste ◽  
Maike Käärik ◽  
Viktoria Gudkova ◽  
Jekaterina Kozlova ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 454
Author(s):  
Aruna Kumar Mohanty ◽  
Young-eun Song ◽  
Jung-rae Kim ◽  
Nowon Kim ◽  
Hyun-jong Paik

A class of phenolphthalein anilide (PA)-based poly(ether sulfone) multiblock copolymers containing pendant quaternary ammonium (QA) and imidazolium (IM) groups were synthesized and evaluated as anion exchange membrane (AEM) materials. The AEMs were flexible and mechanically strong with good thermal stability. The ionomeric multiblock copolymer AEMs exhibited well-defined hydrophobic/hydrophilic phase-separated morphology in small-angle X-ray scattering and atomic force microscopy. The distinct nanophase separated membrane morphology in the AEMs resulted in higher conductivity (IECw = 1.3–1.5 mequiv./g, σ(OH−) = 30–38 mS/cm at 20 °C), lower water uptake and swelling. Finally, the membranes were compared in terms of microbial fuel cell performances with the commercial cation and anion exchange membranes. The membranes showed a maximum power density of ~310 mW/m2 (at 0.82 A/m2); 1.7 and 2.8 times higher than the Nafion 117 and FAB-PK-130 membranes, respectively. These results demonstrated that the synthesized AEMs were superior to Nafion 117 and FAB-PK-130 membranes.


Author(s):  
Lulu An ◽  
Xu Zhao ◽  
Tonghui Zhao ◽  
Deli Wang

Anion exchange membrane fuel cell (AEMFC) is becoming highly attractive for hydrogen utilization owing to the advantages of employing economic catalysts in alkaline electrolytes. Nevertheless, the kinetics of anodic hydrogen...


Author(s):  
Jonghyun Hyun ◽  
Seok-Hwan Yang ◽  
Gisu Doo ◽  
Sungyu Choi ◽  
Dong-Hyun Lee ◽  
...  

The durability of the membrane electrode assembly (MEA) is one of the important requirements for the successful commercialization of anion exchange membrane fuel cells (AEMFCs). While chemical stabilities of the...


RSC Advances ◽  
2017 ◽  
Vol 7 (31) ◽  
pp. 19153-19161 ◽  
Author(s):  
Xueqiang Gao ◽  
Hongmei Yu ◽  
Jia Jia ◽  
Jinkai Hao ◽  
Feng Xie ◽  
...  

The anion exchange ionomer incorporated into the electrodes of an anion exchange membrane fuel cell (AEMFC) enhances anion transport in the catalyst layer of the electrode, and thus improves performance and durability of the AEMFC.


2015 ◽  
Vol 54 ◽  
pp. 10-13 ◽  
Author(s):  
Raoudha Haddad ◽  
Jessica Thery ◽  
Bernard Gauthier-Manuel ◽  
Kamal Elouarzaki ◽  
Michael Holzinger ◽  
...  

2021 ◽  
pp. 139439
Author(s):  
Sungjun Kim ◽  
Min Her ◽  
Yongmin Kim ◽  
Chi-Yeong Ahn ◽  
Sungbin Park ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document