H2 – CH4 blending fuels combustion using a cyclonic burner on colorless distributed combustion

Author(s):  
Kenan Bilgin Kekec ◽  
Serhat Karyeyen
2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Ahmed O. Said ◽  
Ahmed E. E. Khalil ◽  
Ashwani K. Gupta

Colorless distributed combustion (CDC) has shown to provide ultra-low emissions of NO, CO, unburned hydrocarbons, and soot, with stable combustion without using any flame stabilizer. The benefits of CDC also include uniform thermal field in the entire combustion space and low combustion noise. One of the critical aspects in distributed combustion is fuel mixture preparation prior to mixture ignition. In an effort to improve fuel mixing and distribution, several schemes have been explored that includes premixed, nonpremixed, and partially premixed. In this paper, the effect of dual-location fuel injection is examined as opposed to single fuel injection into the combustor. Fuel distribution between different injection points was varied with the focus on reaction distribution and pollutants emission. The investigations were performed at different equivalence ratios (0.6–0.8), and the fuel distribution in each case was varied while maintaining constant overall thermal load. The results obtained with multi-injection of fuel using a model combustor showed lower emissions as compared to single injection of fuel using methane as the fuel under favorable fuel distribution condition. The NO emission from double injection as compared to single injection showed a reduction of 28%, 24%, and 13% at equivalence ratio of 0.6, 0.7, and 0.8, respectively. This is attributed to enhanced mixture preparation prior to the mixture ignition. OH* chemiluminescence intensity distribution within the combustor showed that under favorable fuel injection condition, the reaction zone shifted downstream, allowing for longer fuel mixing time prior to ignition. This longer mixing time resulted in better mixture preparation and lower emissions. The OH* chemiluminescence signals also revealed enhanced OH* distribution with fuel introduced through two injectors.


Author(s):  
Ahmed E. E. Khalil ◽  
Ashwani K. Gupta

Colorless Distributed Combustion (CDC) has been shown to provide singular benefits on ultra-low pollutants emission, enhanced stability and thermal field uniformity. To achieve CDC conditions, fuel-air mixture must be properly prepared and mixed with hot reactive gases from within the combustor prior to the mixture ignition. Hot reactive gases reduce the oxygen concentration in the mixture while increasing its temperature. In this paper, the impact of fuel type (methane, propane, and hydrogen enriched methane) on achieving distributed combustion is investigated. A mixture of nitrogen and carbon dioxide was mixed to simulate the hot recirculated gases at different temperatures using normal air upstream of the combustor. Increasing the amounts of nitrogen and carbon dioxide reduced the oxygen concentration within the combustor. Distributed combustion was identified through OH* chemiluminescence distribution across the combustor. For methane, this oxygen concentration varied between 13.8% and 11.2% (depending on the mixture temperature) with some 85% reduction in NO emissions as compared to that without entrainment. Similar behavior was demonstrated with propane and hydrogen enriched methane, albeit at a lower oxygen concentration (13.7%–11.6% and 12.2%–10.5%), to result in 94% and 92% reduction in NO emission, respectively. The inlet gas temperature was varied between 300K and 750K. Experimental data using a variety of fuels showed NO emissions of 1 PPM or less. Analysis and extrapolation of obtained data suggest that distributed combustion can be achieved at an oxygen concentration of 9.5% for hot reactive entrained gases having a temperature of 1800K. This value may be used as a guideline to achieve distributed combustion with ultra-low emission.


Sign in / Sign up

Export Citation Format

Share Document