Numerical simulation of hydrogen filling process in novel high-pressure microtube storage device

Author(s):  
Guokun Liu ◽  
Yanzhou Qin ◽  
Yuwen Liu
Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1099 ◽  
Author(s):  
Hanxue Cao ◽  
Chao Shen ◽  
Chengcheng Wang ◽  
Hui Xu ◽  
Juanjuan Zhu

Although numerical simulation accuracy makes progress rapidly, it is in an insufficient phase because of complicated phenomena of the filling process and difficulty of experimental verification in high pressure die casting (HPDC), especially in thin-wall complex die-castings. Therefore, in this paper, a flow visualization experiment is conducted, and the porosity at different locations is predicted under three different fast shot velocities. The differences in flow pattern between the actual filling process and the numerical simulation are compared. It shows that the flow visualization experiment can directly observe the actual and real-time filling process and could be an effective experimental verification method for the accuracy of the flow simulation model in HPDC. Moreover, significant differences start to appear in the flow pattern between the actual experiment and the Anycasting solution after the fragment or atomization formation. Finally, the fast shot velocity would determine the position at which the back flow meets the incoming flow. The junction of two streams of fluid would create more porosity than the other location. There is a transition in flow patterns due to drag crisis under high fast shot velocity around two staggered cylinders, which resulted in the porosity relationship also changing from R1 < R3 < R2 (0.88 m/s) to R1 < R2 < R3 (1.59 and 2.34 m/s).


2011 ◽  
Vol 462-463 ◽  
pp. 785-790
Author(s):  
Xiao Hong Li ◽  
Hu Si ◽  
Yan Ming Xie

The evolvement of rock fracture is a complicated and nonlinear dynamic problem. On the assumption that rock is homogeneous and isotropic, a numerical model was developed to simulate rock fracture under high pressure water jet based on continuum damage mechanics and nonlinear finite element method. The dynamic effect of rock was simulated by the dynamic contact method under high pressure water jet. The numerical simulation results showed that rock failure occurred within several milliseconds and the evolvement of it was for step under high pressure water jet and that the stress propagation in rock rapidly decayed with the distance from the jet centre. On the whole, the numerical results clearly exhibited the process of rock fracture and the extent of the water jet under high pressure water jet. It was important to the application of jet cutting rock theory and the development of water jet technology.


Sign in / Sign up

Export Citation Format

Share Document