Mechanistic implications of the solvent kinetic isotope effect in the hydrolysis of NaBH4

Author(s):  
Alina Sermiagin ◽  
Dan Meyerstein ◽  
Gifty Sara Rolly ◽  
Totan Mondal ◽  
Haya Kornweitz ◽  
...  
2002 ◽  
Vol 80 (10) ◽  
pp. 1343-1350 ◽  
Author(s):  
H Slebocka-Tilk ◽  
F Sauriol ◽  
Martine Monette ◽  
R S Brown

A study of the hydrolysis of formamide is reported with the aims of isolating the water reaction for hydrolysis from the acid and base hydrolysis terms and determining the solvent deuterium kinetic isotope effect (dkie) on base-catalyzed hydrolysis. Respective activation parameters (ΔH‡ and ΔS‡) of (17.0 ± 0.4) kcal mol–1 and (–18.8 ± 1.3) cal mol–1 K–1 for the acid reaction and (17.9 ± 0.2) kcal mol–1 and (–11.1 ± 0.5) cal mol–1 K–1 for the base reaction were determined from Eyring plots of the second-order rate constants over the range of 27–120°C. Kinetic studies at the minima of the pH/rate profiles in the pH range from 5.6 to 6.2 in MES buffers at 56°C, and in the pH range of 4.25–6.87 in acetate and phosphate buffers at 120°C are reported. At 56°C the available data fit the expression k56obs = 0.00303[H3O+] + 0.032[HO–] + (3.6 ± 0.1) × 10–9, while at 120°C the data fit k120obs = (0.15 ± 0.02)[H3O+] + (3.20 ± 0.24)[HO–] + (1.09 ± 0.29) × 10–6. Preliminary experimental estimates of Ea (ln A) of 22.5 kcal mol–1 (15.03) for the water rate constant (kw) are calculated from an Arrhenius plot of the 56 and 120°C data giving an estimated kw of 1.1 × 10–10 s–1 (t1/2 = 199 years) at 25°C. Solvent dkie values of kOH/kOD = 1.15 and 0.77 ± 0.06 were determined at [OL–] = 0.075 and 1.47 M, respectively. The inverse value is determined under conditions where the the first step of the reaction dominates and is analyzed in terms of a rate-limiting attack of OL–.Key words: formamide, activation parameters, water reaction, acid and base hydrolysis, solvent kinetic isotope effect.


1990 ◽  
Vol 268 (2) ◽  
pp. 317-323 ◽  
Author(s):  
T Selwood ◽  
M L Sinnott

1. Michaelis-Menten parameters for the hydrolysis of 4-nitrophenyl β-D-galactopyranoside and 3,4-dinitrophenyl β-D-galactopyranoside Escherichia coli (lacZ) β-galactosidase were measured as a function of pH or pD (pL) in both 1H2O and 2H2O. 2. For hydrolysis of 4-nitrophenyl β-D-galactopyranoside by Mg2(+)-free enzyme, V is pL-independent below pL 9, but the V/Km-pL profile is sigmoid, the pK values shifting from 7.6 +/- 0.1 in 1H2O to 8.2 +/- 0.1 in 2H2O, and solvent kinetic isotope effects are negligible, in accord with the proposal [Sinnott, Withers & Viratelle (1978) Biochem. J. 175, 539-546] that glycone-aglycone fission without acid catalysis governs both V and V/Km. 3. V for hydrolysis of 4-nitrophenyl β-D-galactopyranoside by Mg2(+)-enzyme varies sigmoidally with pL, the pK value shifting from 9.19 +/- 0.09 to 9.70 +/- 0.07; V/Km shows both a low-pL fall, probably due to competition between Mg2+ and protons [Tenu, Viratelle, Garnier & Yon (1971) Eur. J. Biochem. 20, 363-370], and a high-pL fall, governed by a pK that shifts from 8.33 +/- 0.08 to 8.83 +/- 0.08. There is a negligible solvent kinetic isotope effect on V/Km, but one of 1.7 on V, which a linear proton inventory shows to arise from one transferred proton. 4. The variation of V and V/Km with pL is sigmoid for hydrolysis of 3,4-dinitrophenyl β-D-galactopyranoside by Mg2(+)-enzyme, with pK values showing small shifts, from 8.78 +/- 0.09 to 8.65 +/- 0.08 and from 8.7 +/- 0.1 to 8.9 +/- 0.1 respectively. There is no solvent isotope effect on V or V/Km for 3,4-dinitrophenyl β-D-galactopyranoside, despite hydrolysis of the galactosyl-enzyme intermediate governing V. 5. Identification of the ‘conformation change’ in the hydrolysis of aryl galactosides proposed by Sinnott & Souchard [(1973) Biochem. J. 133, 89-98] with the protolysis of the magnesium phenoxide arising from the action of enzyme-bound Mg2+ as an electrophilic catalyst rationalizes these data and also resolves the conflict between the proposals and the 18O kinetic-isotope-effect data reported by Rosenberg & Kirsch [(1981) Biochemistry 20, 3189-3196]. It should be noted that the actual Km values were determined to higher precision than can be estimated from the Figures in this paper.(ABSTRACT TRUNCATED AT 400 WORDS)


2020 ◽  
Vol 22 (20) ◽  
pp. 11219-11243 ◽  
Author(s):  
Ken Sakaushi

The fundamental aspects of quantum electrocatalysts are discussed together with the newly developed electrochemical kinetic isotope effect (EC-KIE) approach.


1993 ◽  
Vol 290 (1) ◽  
pp. 103-107 ◽  
Author(s):  
O Smékal ◽  
M Yasin ◽  
C A Fewson ◽  
G A Reid ◽  
S K Chapman

L-Lactate dehydrogenase (L-LDH) from Saccharomyces cerevisiae and L-mandelate dehydrogenase (L-MDH) from Rhodotorula graminis are both flavocytochromes b2. The kinetic properties of these enzymes have been compared using steady-state kinetic methods. The most striking difference between the two enzymes is found by comparing their substrate specificities. L-LDH and L-MDH have mutually exclusive primary substrates, i.e. the substrate for one enzyme is a potent competitive inhibitor for the other. Molecular-modelling studies on the known three-dimensional structure of S. cerevisiae L-LDH suggest that this enzyme is unable to catalyse the oxidation of L-mandelate because productive binding is impeded by steric interference, particularly between the side chain of Leu-230 and the phenyl ring of mandelate. Another major difference between L-LDH and L-MDH lies in the rate-determining step. For S. cerevisiae L-LDH, the major rate-determining step is proton abstraction at C-2 of lactate, as previously shown by the 2H kinetic-isotope effect. However, in R. graminis L-MDH the kinetic-isotope effect seen with DL-[2-2H]mandelate is only 1.1 +/- 0.1, clearly showing that proton abstraction at C-2 of mandelate is not rate-limiting. The fact that the rate-determining step is different indicates that the transition states in each of these enzymes must also be different.


Sign in / Sign up

Export Citation Format

Share Document