A simplified analytical model for metal sandwich beam with soft core under impulsive loading over a central patch

2014 ◽  
Vol 74 ◽  
pp. 67-82 ◽  
Author(s):  
Qinghua Qin ◽  
Chao Yuan ◽  
Jianxun Zhang ◽  
T.J. Wang
2012 ◽  
Vol 9 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Anupam Chakrabarti ◽  
H.D Chalak ◽  
Mohd. Ashraf Iqbal ◽  
Abdul Hamid Sheikh

2020 ◽  
Vol 54 (30) ◽  
pp. 4875-4887
Author(s):  
Lauren MacDonnell ◽  
Pedram Sadeghian

This paper presents the results of experimental and analytical studies on the behaviour of sandwich beams fabricated with layered cores and glass fiber-reinforced polymer (GFRP) composite facings. The GFRP facings were fabricated using a unidirectional fiberglass fabric and epoxy resin, and the cores were fabricated using a thin non-woven continuous-strand polyester fiber mat with a thickness of 4.1 mm. A total of 30 sandwich beams with the width of 50 mm were prepared tested with five varying core configurations including cores made with one, two, or three layers of the fiber mat core and with or without the inclusion of intermediate GFRP layers. The specimens were tested up to failure under four-point bending at two different spans to characterize flexural and shear properties of the specimens. Two types of failure were observed, namely crushing of the compression facesheet and core shear. The load-deflection, load-strain, and moment-curvature behaviour were analyzed and using the results the flexural stiffness, shear stiffness, and core shear modulus were calculated. An analytical model was also developed to predict load-deflection behaviour and failure loading of sandwich specimens with varying core layouts. After verification, the analytical model was used for a parametric study of cases not considered in the experimental study, including additional GFRP and fiber mat core layers. It was shown that additional fiber mat core layers and the inclusion of intermediate GFRP layers can increase the strength and overall stiffness of a sandwich beam, while additional GFRP layers can only increase the overall stiffness of the system. The analytical model can be used to optimize the configuration of layered sandwich composites for cost effective rehabilitation techniques of culverts, pipelines, and other curved-shape structures where a thin, flexible core is needed to accommodate the curvature of the existing structure.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Xiao-Dong Yang ◽  
Wei Zhang ◽  
Li-Qun Chen

The transverse vibrations and stability of an axially moving sandwich beam are studied in this investigation. The face layers are assumed to be in the membrane state, which bears only axial loading but no bending. Only shear deformation is considered for the soft core layer. The governing partial equation is derived using Newton's second law and then transferred into a dimensionless form. The Galerkin method and the complex mode method are employed to study the natural frequencies. In comparison with the classical homogenous axially moving beam, the gyroscopic matrix is no longer skew-symmetric because of the introduction of the soft core. The critical speed for the divergence of the axially moving sandwich beam is analytically obtained. The contribution of the core layer shear modulus to the natural frequencies and critical speed is discussed.


2013 ◽  
Vol 702 ◽  
pp. 275-279
Author(s):  
Hai Wei Lv ◽  
Ying Hui Li ◽  
Liang Li

A new sandwich beam theory is proposed by introducing independent variables of the displacements of face sheets, middle plane of soft core according to the incompression in transverse direction of traditional sandwich beam theory. Based on Hamilton principal, the governing equation of the system is established. Galerkin truncation method was used to solve the governing equation. It was found that (1) the first mode of the system displays that it is consistent with the traditional sandwich beam theory; (2) the second mode of the system shows that the soft core is in the state of tension or in compression; (3) the third mode of the system displays that the upper part and lower part of soft core are in different state (tension or compression); (4) The incompressible model of sandwich beam is the special form of soft sandwich beam we establish in this paper.


Sign in / Sign up

Export Citation Format

Share Document