Dynamics response of a simply supported sandwich beam subjected to impulsive loading

1994 ◽  
Vol 27 (3) ◽  
pp. 331-337 ◽  
Author(s):  
K.Y. Lam ◽  
Lu Chun
2012 ◽  
Vol 525-526 ◽  
pp. 357-360
Author(s):  
Pei Xiu Xia ◽  
Guang Ping Zou ◽  
Zhong Liang Chang

The effect of the interface slip is neglected in most studies on calculating deflection of sandwich beams. By taking a simply supported sandwich beams under uniformly distributed loads as an example, simplified analytical models of the interface slip are established, and corresponding clculation formulas of interface slip between steel panels and concrete and section curvatures are derived. The formula for deflection of sandwich beams are then presented. This formula reflects the relationship of influence each other between the interface slip and deflection.


1975 ◽  
Vol 42 (4) ◽  
pp. 897-900
Author(s):  
B. E. Sandman

A pair of governing differential equations form the basis for the study of steady-state forced vibration of a sandwich beam with longitudinal nonuniformity in the stiffness and mass of the middle layer. The spatial solution for simply supported boundary conditions is obtained by a Fourier analysis of both material and kinematic variations. The solution is utilized in the numerical study of a sandwich beam with a segmented configuration of elastic and viscoelastic core materials. The results exemplify a tuned configuration of core segments for optimum damping of the first resonant mode.


2011 ◽  
Vol 94-96 ◽  
pp. 902-908 ◽  
Author(s):  
Zheng Xin Zhang ◽  
Fang Lin Huang ◽  
Yan Bin Wu

This paper presents a method to simulate the mechanical behavior of magnetorheological fluid (MRF) subjected to magnetic field in the pre-yield region in ANSYS. The main idea is to devide an MRF element into two coincident elements, one of them has density and viscosity without shear modulus while another has shear modulus without density and viscosity. Taking a simply supported MRF sandwich beam as an example, good results and reasonable conclusion are obtained by comparing the results with the theoretical analysis and experimental study of Ref.[1]. The validity of finite element analysis is also investigated in this paper. At present, there is no exactly appropriate element type in ANSYS to model MRF, this kind of method called coincident elements method (CEM) will provide a new way to model the structures with MRF or MR dampers in ANSYS, and it also has reference roles for the future development of related elements in ANSYS.


1968 ◽  
Vol 35 (1) ◽  
pp. 59-65 ◽  
Author(s):  
Norman Jones

It is clear from a survey of literature on the dynamic deformation of rigid-plastic plates that most work has been focused on plates in which either membrane forces or bending moments alone are considered important, while the combined effect of membrane forces and bending moments on the behavior of plates under static loads and beams under dynamic loads is fairly well established. This paper, therefore, is concerned with the behavior of circular plates loaded dynamically and with deflections in the range where both bending moments and membrane forces are important. A general theoretical procedure is developed from the equations for large deflections of plates and a simplified yield condition due to Hodge. The results obtained when solving the governing equations for the particular case of a simply supported circular plate loaded with a uniform impulsive velocity are found to compare favorably with the corresponding experimental values recorded by Florence.


1968 ◽  
Vol 35 (4) ◽  
pp. 803-809 ◽  
Author(s):  
J. B. Martin ◽  
L. S.-S. Lee

A unified method of approximating the response of rigid-plastic and elastic, perfectly plastic beams subjected to impulsive loading is described. The method is based on the uniqueness proof for such problems. A simply supported beam subjected to a uniform impulse is given as an illustrative example.


AIAA Journal ◽  
2002 ◽  
Vol 40 ◽  
pp. 2133-2136
Author(s):  
H. Arya ◽  
R. P. Shimpi ◽  
N. K. Naik

Sign in / Sign up

Export Citation Format

Share Document