Experimental and numerical investigations on low-velocity impact response of high strength steel/composite hybrid plate

2019 ◽  
Vol 123 ◽  
pp. 1-13 ◽  
Author(s):  
Yiben Zhang ◽  
Lingyu Sun ◽  
Lijun Li ◽  
Taikun Wang ◽  
Le Shen
2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Gautam S. Chandekar ◽  
Ajit D. Kelkar

In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio.


2021 ◽  
pp. 152808372110154
Author(s):  
Ziyu Zhao ◽  
Tianming Liu ◽  
Pibo Ma

In this paper, biaxial warp-knitted fabrics were produced with different high tenacity polyester linear density and inserted yarns density. The low-velocity impact property of flexible composites made of polyurethane as matrix and biaxial warp-knitted fabric as reinforcement has been investigated. The effect of impactor shape and initial impact energy on the impact response of flexible composite is tested. The results show that the initial impact energy have minor effect on the impact response of the biaxial warp-knitted flexible composites. The impact resistance of flexible composite specimen increases with the increase of high tenacity polyester linear density and inserted yarns density. The damage morphology of flexible composite materials is completely different under different impactor shapes. The findings have theoretical and practical significance for the applications of biaxial warp-knitted flexible composite.


2021 ◽  
Vol 150 ◽  
pp. 103813
Author(s):  
Zhiqiang Fan ◽  
Tao Suo ◽  
Taoyi Nie ◽  
Peng Xu ◽  
Yingbin Liu ◽  
...  

2021 ◽  
Vol 1123 (1) ◽  
pp. 012040
Author(s):  
V. Sairam ◽  
S.Kishor Kanna ◽  
P.S.Samuel Ratna Kumar

2016 ◽  
Vol 725 ◽  
pp. 127-131 ◽  
Author(s):  
Kumar V. Akshaj ◽  
P. Surya ◽  
M.K. Pandit

Dent resistance of structures is one of the important design parameters to consider in automotive, aerospace, packaging and transportation of fragile goods, civil engineering and marine industries. It is important to study the dynamic impact response of various combinations of skin and core materials which can provide desired fracture toughness and highest strength to weight ratio for such applications. This paper discusses the low velocity impact response of sandwich structures having unique combination of mild steel as skin material bonded to thermoplastics/PU foam as core material. HDPE, LDPE and polypropylene were the choice of thermoplastics and an optimum combination of materials for the sandwich structure was evaluated using drop-weight experimental set up. It is observed that LDPE is the best choice of core material for the sandwich structures considered.


Sign in / Sign up

Export Citation Format

Share Document