Time-resolved photoluminescence studies of InGaN/GaN multi-quantum-wells blue and green light-emitting diodes at room temperature

Optik ◽  
2016 ◽  
Vol 127 (4) ◽  
pp. 1809-1813 ◽  
Author(s):  
Qiang Li ◽  
Shuai Wang ◽  
Zhi-Na Gong ◽  
Feng Yun ◽  
Ye Zhang ◽  
...  
2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Bing Xu ◽  
Hai Tao Dai ◽  
Shu Guo Wang ◽  
Fu-Chuan Chu ◽  
Chou-Hsiung Huang ◽  
...  

We investigated the effects of pre-TMIn treatment on the optical properties of green light emitting diodes (LEDs). Although pre-TMIn treatment did not affect the epitaxial structure of quantum wells, it significantly improved the quality of the surface morphology relative to that of the untreated sample. Indium cluster can be seen by high-resolution transmission electron microscopy (HR-TEM), which is the explanation for the red-shift of photoluminescence (PL). Time-resolved photoluminescence measurements indicated that the sample prepared with pre-TMIn treatment had a shorter radiative decay time. As a result, the light output power of the treated green LED was higher than that of the conventional untreated one. Thus, pre-TMIn treatment appears to be a simple and efficient means of improving the performance of green LEDs.


1997 ◽  
Vol 71 (4) ◽  
pp. 425-427 ◽  
Author(s):  
C.-K. Sun ◽  
T.-L. Chiu ◽  
S. Keller ◽  
G. Wang ◽  
M. S. Minsky ◽  
...  

1996 ◽  
Vol 449 ◽  
Author(s):  
A. Hangleiter ◽  
F. Scholz ◽  
V. Härle ◽  
J. S. Im ◽  
G. Frankowsky

ABSTRACTBoth spontaneous and stimulated emission processes are essential ingredients for constructing a laser from the nitrides. Based on our picosecond time-resolved photoluminescence studies we show that spontaneous radiative recombination is strongly influenced by excitonic effects, both in bulk GaN and in quantum wells. Particularly in quantum wells, localization of excitons plays an important role. We have studied the optical gain spectra in GaInN/GaN and GaN/AlGaN double heterostructures and quantum wells, grown by LP-MOVPE, using the stripe excitation method. Both room temperature and low temperature measurements were performed. Based on our results, we discuss the physical mechanism of optical gain in the nitrides as well as consequences for laser operation. We show that localization or, equivalently, the formation of quantum dot like structures, governs the optical gain mechanism in the nitrides.


2021 ◽  
Vol 21 (11) ◽  
pp. 5648-5652
Author(s):  
ll-Wook Cho ◽  
Bom Lee ◽  
Kwanjae Lee ◽  
Jin Soo Kim ◽  
Mee-Yi Ryu

The optical properties of InGaN/GaN green light-emitting diodes (LEDs) with an undoped graded short-period superlattice (GSL) and a Si-doped GSL (SiGSL) were investigated using photoluminescence (PL) and time-resolved PL spectroscopies. For comparison, an InGaN/GaN conventional LED (CLED) without the GSL structure was also grown. The SiGSL sample showed the strongest PL intensity and the largest PL peak energy because of band-filling effect and weakened quantum- confined stark effect (QCSE). PL decay time of SiGSL sample at 10 K was shorter than those of the CLED and GSL samples. This finding was attributed to the oscillator strength enhancement by the reduced QCSE due to the Coulomb screening by Si donors. In addition, the SiGSL sample exhibited the longest decay time at 300 K, which was ascribed to the reduced defect and dislocation density. These results indicate that insertion of the Si-doped GSL structure is an effective strategy for improving the optical properties in InGaN/GaN green LEDs.


2018 ◽  
Vol 7 (3) ◽  
pp. 1801575 ◽  
Author(s):  
Maotao Yu ◽  
Chang Yi ◽  
Nana Wang ◽  
Liangdong Zhang ◽  
Renmeng Zou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document