Structural, optical and electrical properties of DC sputtered indium saving indium-tin oxide (ITO) thin films

Optik ◽  
2018 ◽  
Vol 156 ◽  
pp. 728-737 ◽  
Author(s):  
Leandro Voisin ◽  
Makoto Ohtsuka ◽  
Svitlana Petrovska ◽  
Ruslan Sergiienko ◽  
Takashi Nakamura
2011 ◽  
Vol 343-344 ◽  
pp. 116-123
Author(s):  
Yu Ming Peng ◽  
Yan Kuin Su ◽  
Cheng Jye Chu ◽  
Ru Yuan Yang ◽  
Ruei Ming Huang

In this paper, the indium tin oxide (ITO) thin films were prepared by a sol-gel spin coating method and then annealed under different temperatures (400, 500 and 550°C) in a mixture atmosphere of 3.75% H2 with 96.25% N2 gases. The microstructure, optical and electrical properties of the prepared films were investigated and discussed. The XRD patterns of the ITO thin films indicated the main peak of the (222) plane and showed a high degree of crystallinity with an increase of the annealing temperature. In addition, due to the pores existing in the prepared films, the optical and electrical properties of the prepared films are degraded through the sol-gel process. Thus, the best transmittance of 70.0 %in the visible wavelength region and the lowest resistivity of about 1.1×10-2 Ω-cm were obtained when the prepared film was annealed at 550°C.


2012 ◽  
Vol 545 ◽  
pp. 393-398 ◽  
Author(s):  
Mohammed Khalil Mohammed Ali ◽  
K. Ibrahim ◽  
M.Z. Pakhuruddin ◽  
M.G. Faraj

This work describe the optical and electrical properties of indium tin oxide (ITO) thin films prepared by thermal evaporation method on flexible plastic substrate (polyethylene terephthalate (PET)). The optical transmission and absorption of ITO films in the visible and UV rang have been studied. The resistivity, sheet resistant, carrier concentration and mobility have been evaluated by Hall Effect measurement. The surface morphology and roughness were investigated by atomic force microscopy (AFM). The results indicate that the optical transmission greater than 85% over the visible rang and it was found to be strongly dependent on the thickness of ITO films. The Resistivity and sheet resistant with low values (10-4Ω-cm, 9.22 Ω/ respectively) were obtained and ties values were increased with ITO thin films thickness increasing .AFM investigation showed that the roughness surface of (8 – 30) RMS have been obtained over different thickness of ITO films. The obtained results of the deposited films by this method were analyzed. Details of sample preparation, experimental methods and results are given and discussed.


2008 ◽  
Vol 23 (9) ◽  
pp. 2500-2505 ◽  
Author(s):  
Y. Zhong ◽  
Y.C. Shin ◽  
C.M. Kim ◽  
B.G. Lee ◽  
E.H. Kim ◽  
...  

The optical and electrical properties of “tilted” and “spiral” indium tin oxide (ITO) thin films are reported. The influence of the flux incident angle on the optical and electrical properties is investigated. When the flux incident angle is increased, both the refractive index and extinction coefficient of the film are decreased, but the resistivity is increased. Thus, the physical properties of the film can be modified over a wide range by adjusting the flux incident angle and substrate rotation scheme. It is suggested that the oblique angle deposition technique provides ITO films with more application possibilities by allowing their optical and electrical properties to be tailored.


2014 ◽  
Vol 979 ◽  
pp. 263-266 ◽  
Author(s):  
Bhumin Yosvichit ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Viyapol Patthanasetakul ◽  
Benjarong Samransuksamer ◽  
...  

Transparent conductive oxides (TCOs) with indium tin oxide (ITO) thin films were deposited without substrate heating and post-deposition anneal using ion-beam assisted evaporation technique on glass and silicon substrates. The oxygen ion with emitting current produced using End-Hall ion source for bombardment of growing surface to improve ITO films structure. In this study, we investigate the effect of an ion flux to ITO films in terms of structural, optical and electrical properties. The emitting current can be varied from 0.5 to 2.0 A with the oxygen flow rate 7 sccm. The total film thickness and deposition rate are 200 nm and 0.2 nm/s, respectively. The structural properties of thin films were characterized by X-ray diffraction (XRD) to discover the preferred orientation with phase of crystalline and scanning electron microscopy (SEM) to examine the surface morphology in cross-section view. To determine the transmission spectra of the films, UV-visible spectrometer is introduced. Moreover, the films were also measured to investigate resistivity, carrier concentration, mobility and sheet resistance by Hall-effect measurements and four-point probe. It has been found that the ITO films with lowest electrical resistivity for the emitting current of 1 A about 5.57x10-4 Ω.cm and slightly increases with increase of the emitting current. The mobility and carrier concentration rapidly decreases with increase the emitting current from 1.0 A to 2.0 A.


2013 ◽  
Vol 684 ◽  
pp. 279-284 ◽  
Author(s):  
Yu Ming Peng ◽  
Yan Kuin Su ◽  
Ru Yuan Yang

In this paper, the Indium Tin Oxide (ITO) thin films were prepared by a sol-gel dip coating method and then annealed at 600°C under different atmosphere (vacuum, N2 and 96.25%N2+3.75%H2). Their microstructure, optical and electrical properties were investigated and discussed. Suitable atmosphere can improve the crystalline of the ITO films, therefore the optical and electrical properties of the ITO films are improved. The uv-vis results showed the maximum of transmittance in the visible range (380-780 nm) of 85.6% and the lowest resistivity of 4.4×10-2 Ω-cm when the ITO films were annealed under 96.25% N2 with 3.75% H2 atmosphere.


Sign in / Sign up

Export Citation Format

Share Document