scholarly journals Experimental and numerical investigation into rectangular tube extrusion of high-strength magnesium alloy

Author(s):  
Shengwen Bai ◽  
Gang Fang
Alloy Digest ◽  
2015 ◽  
Vol 64 (9) ◽  

Abstract Elektron EQ21 is a casting high strength magnesium alloy developed as a heat treatable alloy with rare earth element additions. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive, shear, and bend strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, joining, and surface treatment. Filing Code: Mg-80. Producer or source: Magnesium Elektron Wrought Products, North America.


2011 ◽  
Vol 299-300 ◽  
pp. 663-666 ◽  
Author(s):  
Ping Shi ◽  
Xue Dong Han

Magnesium alloys are being used as structural components in industry because of their high strength to weight ratio. But their high electrochemical activity and poor corrosion resistance limited their applications. Therefore, surface modifications are needed for protection purpose. This paper studied the anodic micro-arc oxidation and electroless Ni-P plating surface modifications on AZ80 magnesium alloy. The SEM, XRD and EDS were used to characterize the surface coating. It shows that a micro-porous MgO layer with the pores size 5 – 20 μm was fabricated on the bare magnesium alloy. The nodule Ni-P deposition could be prepared on the out layer of MgO with Ni/P atomic ratio being 1.4. The pores in MgO layer could be sealed by the following Ni-P deposition. Therefore the corrosion resistance of the magnesium alloy could be further improved.


2016 ◽  
Vol 716 ◽  
pp. 13-21 ◽  
Author(s):  
Vladimir Stefanov Hristov ◽  
Kazunari Yoshida

In recent years, due to its low density and high strength/weight ratio, magnesium alloy wires has been considered for application in many fields, such as welding, electronics, medical field (for production of stents). But for those purposes, we need to acquire wires with high strength and ductility. For that we purpose we proposed alternate drawing method, which is supposed to highly decrease the shearing strain near the surface of the wire after drawing, by changing the direction of the wire drawing with each pass and thus acquiring high ductility wires.We have done research on the cold alternate drawing of magnesium alloy wires, by conducting wire drawing of several magnesium wires and testing their strength, hardness, structure, surface and also finite element analysis, we have proven the increase of ductility at the expense of some strength.In this research we are looking to further improve the quality of the drawn wires by examining the benefits of using diamond dies over tungsten carbine dies. Using the alternate drawing method reduces the strength of the drawn wires and thus lowering their drawing limit. By using diamond dies we are aiming to decrease the drawing stress and further increase the drawing limit of the alternate drawn wires and also improve the quality of the finishing surface of the wires. With this in mind we are aiming to produce a good quality wire with low diameter, high ductility, high strength and fine wire surface.


2016 ◽  
pp. 223-228
Author(s):  
Robert W. Klein ◽  
Bruce W. Williams ◽  
Jonathan McKinley ◽  
John R. Einhorn ◽  
Sean R. Agnew

2017 ◽  
Vol 898 ◽  
pp. 79-85
Author(s):  
Tao Lin ◽  
Ji Xue Zhou ◽  
Bai Chang Ma ◽  
Yun Teng Liu ◽  
Di Zhang ◽  
...  

Based on the stress-strain curves at the temperature of 300-450 °C with strain rate of 0.01-1 s−1 by hot compression tests, the empirical dynamic recrystallization models for the semi-continuous AZ31magnesium alloy were developed. The dynamic recrystallization evolution during the seamless tube extrusion of the AZ31 Mg alloy was simulated by numerical method with the derived models and validated by experiment measurements. The results show that at certain extrusion speed the influence of the extruding temperature on the dynamic recrystallization fraction was significant. With the increase of the extruding temperature the volume fraction of dynamic recrystallization increase obviously. The predicted dynamic recrystallization fraction was in an excellent agreement with the experimental results.


Sign in / Sign up

Export Citation Format

Share Document