scholarly journals Running performance of an aerodynamic journal bearing with squeeze film effect

2013 ◽  
Vol 77 ◽  
pp. 184-193 ◽  
Author(s):  
Tomohiro Shou ◽  
Shigeka Yoshimoto ◽  
Tadeusz Stolarski
2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Tadeusz Adam Stolarski

An aerodynamic journal bearing that is capable of self-generating squeeze-film pressure is presented and its dynamic characteristics investigated numerically and experimentally. A numerical method based on a time-marching static model was applied to assess the orbit trajectory path of the rotor upon a perturbation. Experimental results were obtained to validate the effect of the self-generated squeeze-film pressure on the stability of the rotor. Analyzing the Fast Fourier Transform (FFT) responses of the rotor orbits enabled identification of self-excited whirling instabilities. Both numerical and experimental results showed that increasing the squeeze-film effect of the bearing could raise the threshold speed of instability.


Author(s):  
Tuyen Vu Nguyen ◽  
Weiguang Li

The dynamic and hydrodynamic properties of the pad in the fluid pivot journal bearing are investigated in this paper. Preload coefficients, recess area, and size gap, which were selected as input parameters to investigate, are important parameters of fluid pivot journal bearing. The pad’s pendulum angle, lubricant oil flow through the gap, and recess pressure which characterizes the squeeze film damper were investigated with different preload coefficients, recess area, and gap sizes. The computational models were established and numerical methods were used to determine the equilibrium position of the shaft-bearing system. Since then, the pendulum angle of the pad, liquid flow, and recess pressure were determined by different eccentricities.


2020 ◽  
Vol 63 (4) ◽  
pp. 704-717
Author(s):  
Minghui Shi ◽  
Xuejiang Liu ◽  
Kai Feng ◽  
Kai Zhang ◽  
Ming Huang

1974 ◽  
Vol 96 (3) ◽  
pp. 361-364 ◽  
Author(s):  
P. R. K. Murti

The dynamic behavior of squeeze film in a narrow porous journal bearing under a cyclic load is analyzed. A thin-walled bearing with a nonrotating journal is considered and a closed form expression for the pressure distribution is derived. The locus of the journal center is found by numerical methods and it is established with an example that actual contact between the journal and bearing can be avoided by appropriate design of the bearing. Consequently, it is proved that pure squeeze films have a load capacity only under cyclic loads. The analysis also reveals that the permeability of the bearing material and the wall thickness of the bearing influence significantly the operating eccentricity ratio.


Author(s):  
Damien Kaczorowski ◽  
Jean-Mary Georges ◽  
Sandrine Bec ◽  
Andre´-Bernard Vannes ◽  
Andre´ Tonck ◽  
...  

In nuclear power plants, slender tubular components are subjected to vibrations in a PHTW environment. As a result, the two contacting surfaces, tubes and their guides undergo impact at low contact pressures [1]. The components are usually made of stainless steel and it was found that the influence of the PHTW, combined with other actions (such as corrosion, erosion, squeeze film effect, third body effect and cavitation) leads to a particular wear of the material [2] [3]. Therefore, this paper aims to show that the colloidal oxides, formed on the steel surfaces in PHTW, play a principal role in the wear of the surfaces. Actually, due to the specific kinematic conditions of the contact, the flow of compacted oxides abrades the surfaces.


1968 ◽  
Vol 90 (1) ◽  
pp. 191-198
Author(s):  
C. H. T. Pan ◽  
T. Chiang

The squeeze-film bearing has been considered for the output axis of high performance gyroscopes. Viewing this application, it is important that the parasitic torque of the bearing be very small. In the case of a squeeze-film journal bearing, parasitic torque can result from tolerance effects which disrupt rotational symmetry of the bearing. This problem has been studied by assuming ellipses for the tolerances of the journal and bearing surfaces as well as the squeeze motion, respectively. Each tolerance effect is assumed to be axially uniform. The mathematical problem is linearized with respect to each of the tolerances and the radial displacement of the journal. It was found that the parasitic torques do not depend on the radial displacement of the journal. The parasitic torques result from interactions among the three types of tolerance effects while each of the tolerances alone will not lead to any torque. Numerical estimates based on the geometry of a typical gyroscope and current fabrication practice shows such parasitic torques can seriously impair the accuracy of the gyroscope.


Author(s):  
Weili Cui ◽  
Ronald N. Miles ◽  
Dorel Homentcovsci

The effect of the shape and distribution of perforations in parallel plate capacitive MEMS devices on squeeze-film damping is presented. The squeeze film effect is the most important damping effect on the dynamic behavior of most MEMS devices that employ capacitive sensing and actuation, which typically employ narrow air gaps between planar moving surfaces [1, 2]. The stationary plate of a capacitive device is often perforated to reduce the damping and sensor noise and improve the frequency response. The formula for determining the total viscous damping in the gap contains a coefficient Cp that is associated with the geometry and distribution of the holes on the stationary plate. In this study, the coefficient Cp is determined using the finite element method using ANSYS by analogy with heat conduction in a solid with internal heat generation. Round, elliptical, rectangular, and oval holes that are distributed either aligned or offset are analyzed and compared. It is shown that the surface fraction occupied by the perforations is not the only factor that determines Cp. Both the shape and distribution strongly affect the damping coefficient [3, 4]. By using elongated perforations that are properly distributed, the squeeze film damping could be minimized with the minimum amount of perforation. The analysis performed in this work is quite general being applicable to a very large spectrum of frequencies and to various fluids in capacitive sensors. These results can facilitate the design of mechanical structures that utilize capacitive sensing and actuation, such as accelerometers, optical switches, micro-torsion mirrors, resonators, microphones, etc.


Sign in / Sign up

Export Citation Format

Share Document