scholarly journals Web-flange distortional buckling of partially restrained cold-formed steel purlins under uplift loading

2014 ◽  
Vol 89 ◽  
pp. 476-481 ◽  
Author(s):  
Wei-bin Yuan ◽  
Shanshan Cheng ◽  
Long-yuan Li ◽  
Boksun Kim
2010 ◽  
Vol 163-167 ◽  
pp. 651-654
Author(s):  
Tian Hua Zhou ◽  
Shao Feng Nie ◽  
Xiang Bin Liu ◽  
Guang Yi Li

18 specimens of cold-formed steel three limbs built-up section members are tested under axial compression load in this paper. The section forms are divided into two categories: A and B. Load-displacement (P-Δ) curves and failure characteristics of specimens are obtained. The results show that: As to section A members, the failure characteristics of LC, MC and SC series of specimens are flexural-torsional buckling, torsional buckling and distortional buckling, local buckling and distortional buckling. As to section B members, the failure characteristics of LC, MC series of specimens are flexural buckling, while local buckling and distortional buckling for members of SC series.


2017 ◽  
Vol 11 (1) ◽  
pp. 244-257 ◽  
Author(s):  
Xingyou Yao

Background: Cold-formed steel structural sections used in the walls of residential buildings and agricultural facilities are commonly C-shaped sections with web holes. These holes located in the web of sections can alter the elastic stiffness and the ultimate strength of a structural member. The objective of this paper is to study the buckling mode and load-carrying capacity of cold-formed thin-walled steel column with slotted web holes. Methods: Compression tests were conducted on 26 intermediate length columns with and without holes. The tested compressive members included four different kinds of holes. For each specimen, a shell finite element Eigen-buckling analysis and nonlinear analysis were also conducted. The influence of the slotted web hole on local and distortional buckling response had also been studied. The comparison on ultimate strength between test results and calculated results using Chinese cold-formed steel specification GB50018-2002, North American cold-formed steel specification AISI S100-2016, and nonlinear Finite Element method was made. Result: Test results showed that the distortional buckling occurred for intermediate columns with slotted holes and the ultimate strength of columns with holes was less than that of columns without holes. The ultimate strength of columns decreased with the increase in transverse width of hole in the cross-section of member. The Finite element analysis results showed that the web holes could influence on the elastic buckling stress of columns. The shell finite element could be used to model the buckling modes and analysis the ultimate strength of members with slotted web holes. The calculated ultimate strength shows that results predicted with AISI S100-2016 and analyzed using finite element method are close to test results. The calculated results using Chinese code are higher than the test results because Chinese code has no provision to calculate the ultimate strength of members with slotted web holes. Conclusion: The calculated method for cold-formed thin-walled steel columns with slotted web holes are proposed based on effective width method in Chinese code. The results calculated using the proposed method show good agreement with test results and can be used in engineering design for some specific cold-formed steel columns with slotted web holes studied in this paper.


Author(s):  
Bernardo A. Lejano

<p>Getting good lumber for housing construction is becoming difficult in the Philippines due to existing partial log ban. Although, the use of reinforced concrete is still the most popular in construction, an emerging alternative is the use of cold-formed steel (CFS). It is gaining popularity because of its high strength-to- weight ratio. However, information about the structural performance of locally-produced cold-formed steel is almost nonexistent. Although, design provisions are stipulated in the local Code, these are based on formulas developed abroad, hence the need to investigate these cold-formed steel. This study focuses on the C-section cold-formed steel, which is the most popularly used. The objective is to verify its performance when subjected to axial compression and flexure, both experimentally and computationally. For the computational part, the formulas stipulated in the National Structural Code of the Philippines were followed. For the experimental part, the cold-formed steel members were subjected to compression loads and flexural loads. Aside from usual sensors, high-speed cameras were used to capture the failure modes. For axial compression test, 80 specimens with different lengths and thicknesses were tested. For flexure, 24 specimens of back-to-back C-sections were subjected to 4-point bending test. Results showed the predicted strengths were well below the experimental values. In design, this means the use of Code-based formulas is conservative. Failure modes observed were torsional buckling and distortional buckling. Comparison of failure modes between experiment and computation shows 70% agreement for compression and 75% for flexure. Finite element method calculations were also done and were compared with experimental results.</p>


2019 ◽  
Vol 137 ◽  
pp. 251-270 ◽  
Author(s):  
Gustavo Y. Matsubara ◽  
Eduardo de M. Batista ◽  
Guilherme C. Salles

Sign in / Sign up

Export Citation Format

Share Document