C-section Cold-Formed Steel as Structural Members in Housing Construction in the Philippines

Author(s):  
Bernardo A. Lejano

<p>Getting good lumber for housing construction is becoming difficult in the Philippines due to existing partial log ban. Although, the use of reinforced concrete is still the most popular in construction, an emerging alternative is the use of cold-formed steel (CFS). It is gaining popularity because of its high strength-to- weight ratio. However, information about the structural performance of locally-produced cold-formed steel is almost nonexistent. Although, design provisions are stipulated in the local Code, these are based on formulas developed abroad, hence the need to investigate these cold-formed steel. This study focuses on the C-section cold-formed steel, which is the most popularly used. The objective is to verify its performance when subjected to axial compression and flexure, both experimentally and computationally. For the computational part, the formulas stipulated in the National Structural Code of the Philippines were followed. For the experimental part, the cold-formed steel members were subjected to compression loads and flexural loads. Aside from usual sensors, high-speed cameras were used to capture the failure modes. For axial compression test, 80 specimens with different lengths and thicknesses were tested. For flexure, 24 specimens of back-to-back C-sections were subjected to 4-point bending test. Results showed the predicted strengths were well below the experimental values. In design, this means the use of Code-based formulas is conservative. Failure modes observed were torsional buckling and distortional buckling. Comparison of failure modes between experiment and computation shows 70% agreement for compression and 75% for flexure. Finite element method calculations were also done and were compared with experimental results.</p>

2021 ◽  
Vol 10 (2) ◽  
Author(s):  
Bernardo Lejano ◽  
James Matthew De Jesus ◽  
Arvin Patrick Yu

Cold-Formed Steel (CFS) is a good construction material because of its high strength-to-weight ratio, that is, it exhibits efficient load carrying capabilities in combination with its lightweight characteristics. Although CFS is already being used in construction, information on structural performance of locally-produced CFS in the Philippines is scarce. To date, the authors have not found any experimental study done in the Philippines regarding the structural performance of locally-produced CFS. In this study, C-section and Z-section are being studied since these members exhibit buckling failures that may be difficult to predict due to complexity of their section geometry. The objective of this paper is to present the performance of these CFS sections when subjected to concentric axial compression both experimentally and computationally. For the experimental part, the CFS members were subjected to axial compression using a hydraulic jack. High-speed video cameras were used to capture the different failure modes. For the computational aspect, provisions found in the National Structural Code of the Philippines (NSCP) were used to calculate the compression strength of the members. A total of 80 C-section specimens with 5 different lengths and 5 different thicknesses were tested. It was found that the strength calculations using the NSCP provisions were not consistent with the results of the compression tests. For shorter lengths, distortional buckling prevailed as the main failure, while for longer lengths, torsional-flexural buckling occurred. All of the predicted strengths were highly conservative. For the Z-section, a total of 180 specimens with 6 different lengths and 6 different thicknesses were tested. Torsional-flexural buckling was observed in majority of the specimens. Although most of the failure modes were predicted correctly, it was found that the predicted strengths using the NSCP were relatively high compared to the experimental results, thus non-conservative. Finite Element Method (FEM) analyses using ANSYS were conducted. Findings indicate that the experiment results agreed well with the FEM results.


2010 ◽  
Vol 163-167 ◽  
pp. 651-654
Author(s):  
Tian Hua Zhou ◽  
Shao Feng Nie ◽  
Xiang Bin Liu ◽  
Guang Yi Li

18 specimens of cold-formed steel three limbs built-up section members are tested under axial compression load in this paper. The section forms are divided into two categories: A and B. Load-displacement (P-Δ) curves and failure characteristics of specimens are obtained. The results show that: As to section A members, the failure characteristics of LC, MC and SC series of specimens are flexural-torsional buckling, torsional buckling and distortional buckling, local buckling and distortional buckling. As to section B members, the failure characteristics of LC, MC series of specimens are flexural buckling, while local buckling and distortional buckling for members of SC series.


Author(s):  
Majahar M. Baraskar ◽  
Pranil Shetake ◽  
Prof. V. M Bogar ◽  
Dr. Y. M Ghugal

Steel is used in construction industry due to its hardness and tensile strength. Cold formed steel is type of steel which is manufactured at lower temperature. Cold form steel became more popular in twentieth century in construction industry due to its high strength to weight ratio and post-buckling strength. The purpose of this study is to study the behavior of cold-formed steel sections of different shapes but of same cross sectional area for compressive loading. Effect of lips within same cross sectional area, effect of perforation and shape stiffener is evaluated on different sections as channel section, Z section and hat section. Eigen value buckling analysis was carried out to on twelve different models to obtain the buckling load and failure pattern. ANSYS WORKBENCH software was used for numerical simulation of sections. I.S. 801:1975 has been taken under consideration wherever required. Based upon the results, optimum section in each of cases as with lips, without lips and perforated amongst all three sections is suggested. Effect of shape stiffeners provided by previous researcher P. Manikandan on solid sections is evaluated to check its suitability with perforated sections.


2015 ◽  
Vol 766-767 ◽  
pp. 355-361
Author(s):  
S. Sivasaravanan ◽  
V.K. Bupesh Raja ◽  
S. Prabhu ◽  
S. Dineshkumar ◽  
Gokulaprasad

Usage of Hybrid nanocomposite materials provides a greater opportunity to replace the conventional materials due to their properties such as light weight and high strength to based on weight ratio. In this synergitic study, nanosized clay particle and layered double hydroxide particles are used. nanoclay and LDH particles were mixed on the bases of weight percentage (1wt% to 5wt%) by ultra sonication technique. The composite material was fabricated by one of the most common method known as hand lay-up technique. The composite materials was prepared in the form of plate with 4mm of thickness.The characterization of tensile and flexural property of the nanoclay, LDH and combination of both was analysis by tensile test using universal testing machine and three point bending test respectively. The tensile and three point bending test specimens were cut to size as per ASTM standard.The morphology of composite was studied using SEM analysis.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4075 ◽  
Author(s):  
Qing Zhang ◽  
Jun Luo ◽  
Xiang-yu Xie ◽  
Jin Xu ◽  
Zhen-huan Ye

As large-scale rotating machines develop toward high rotating speed and high power–weight ratio, skidding damage has become one of the major initial failure modes of cylindrical roller bearings. Therefore, understanding the skidding damage law is an effective way to ensure the safety of machines supported by cylindrical roller bearings. To realize the skidding damage, a high-speed rolling bearing test rig that can simulate the actual operating conditions of aviation bearings was used in this paper, and the skidding damage dynamic behaviors of cylindrical roller bearings were investigated. In addition, to ensure the accuracy of the obtained skidding damage mechanism, the cylindrical roller bearing was carefully inspected by microscopic analysis when the skidding damage occurred. Out results show that instantaneous increases in friction torque, vibration acceleration, and temperature are clearly observed when the skidding damage occurs in the cylindrical roller bearing. Furthermore, under the conditions of inadequate lubrication and light load, the critical speed of skidding damage is rather low. The major wear mechanisms of skidding damage include oxidation wear, abrasive wear, and delamination wear. The white layers are found locally in the inner ring and rollers under the actions of friction heat and shear force.


2014 ◽  
Vol 501-504 ◽  
pp. 1609-1614
Author(s):  
Zhong Peng ◽  
Jun Huang ◽  
Shao Bin Dai ◽  
Ji Xiong Liu

3 medium thick-walled cold-formed steel top-and-seat angle joints were designed. The ABAQUS nonlinear finite element analysis on earthquake resistance behaviors of the joints were conducted under low cyclic loading. The results indicate that the failure processes and failure modes of 3 specimens are basically the same, the destruction of joints derive from buckling deformation of the top-and-seat angle and buckling of the steel beam flanges; the shapes of hysteresis curves of all specimens are obvious pinch together and present spindle, the displacement ductility factors are greater than 5.5, the equivalent viscous damping factors are greater than 0.158, all the specimens possess good energy dissipation capacity. The secant stiffness variations are almost similar, each specimen represents significant degradation. Increase the thickness of angle and diameter of high-strength bolt can improve the mechanical performance of the joints. Increase the bolt diameter, the ductility, energy dissipation capacity and initial stiffness enhance obviously, however, there is no apparent effect while increasing the thickness of angle.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Xingyou Yao

The objective of this paper is to investigate the buckling behavior and design method of the ultimate strength for the cold-formed steel (CFS) built-up I-sectional columns under axial compression which failed in distortional buckling and interactive buckling. A total of 56 CFS built-up I-sectional columns subjected to axial compression were tested, and the different buckling modes and ultimate strengths were analyzed in detail by varying the thickness, the length, the spacing of screws, the end fastener group, and the cross-sectional dimensions of CFS built-up I-sectional columns. It was shown in the test that noticeable interaction of local and distortional buckling or interaction of local, distortional, and global buckling was observed for the built-up I-sectional columns with different lengths and cross-sectional dimensions. A finite element model (FEM) was developed and validated with experimental results. A further parametric study has been conducted including different cross sections and slenderness ratios for the built-up I-sectional columns. The load-carrying capacities obtained from the experimental and numerical study were used to investigate the feasibility of the current direct strength method (DSM) when DSM was applied to CFS built-up I-sectional columns. The comparison results showed that the current DSM is not safe for CFS built-up columns failed in distortional buckling and interactive buckling. Therefore, the improved design formulas were proposed, and their accuracy was verified by using finite element analysis (FEA) and experimental results of CFS built-up I-sectional columns subjected to axial compression.


2020 ◽  
Vol 992 ◽  
pp. 149-155
Author(s):  
AL-Hasnawi Yasser Sami Ghareb ◽  
Omar Ismael Alhashimi ◽  
Andrey V. Shevchenko ◽  
Nowruzi Mohammad Shoja

In recent years, thin-walled, cold-formed steel (CFS) structural members have gained expanding use in building construction and various sorts of structural systems [1,2,3].The utilization Cold-Formed Steel (CFS) structures has become progressively popular in different fields of building technology. The reasons behind the developing popularity of these products include their ease of fabrication, high strength/weight ratio and suitability for a wide range of applications. These advantages can result in more economic designs, as compared with hot-rolled steel, especially in short-span applications. In this project work attempt has been made to use Cold formed steel section as replacement to conventional steel reinforcement bar.


2019 ◽  
Vol 974 ◽  
pp. 596-600
Author(s):  
AL-Hasnawi Yasser Sami Ghareb ◽  
Andrey V. Shevchenko ◽  
Omar Ismael Alhashimi

The cost-efficient field design is very important in the civil engineering. Therefore, the cold-formed steel structures (CFS) are preferred for construction. A Sophisticated CFS structure which uses a Cellular Concrete is implemented in this paper. The utilization Cold-Formed Steel (CFS) structures have become increasingly popular in different fields of building technology. The reasons behind the growing popularity of these products include their fabrication ease, high strength/weight ratio and suitability for a wide range of applications. These advantages can result in more economic designs, as compared with hot-rolled steel, especially in short-span applications. In this project work an attempt to use a Cold formed steel section as replacement to conventional steel reinforcement bar has been made.


2013 ◽  
Vol 274 ◽  
pp. 459-462 ◽  
Author(s):  
Feng Fan ◽  
Yu Jin Wang ◽  
Li Lin ◽  
Hong Liang Qian

This paper presents an experimental investigation of aluminum alloy H-type sections subjected to axial compression between two pinned ends. The specimens were fabricated using 6082-T6 heat-treated aluminum alloy. 26 material tensile tests were performed then a test program included 12 column tests which were separated into 6 test series of different geometry and ranged from 990 to 1840 mm in length in order to obtain a column curve. All the observed failure modes for the column tests were overall buckling and the axial capacities were obtained.


Sign in / Sign up

Export Citation Format

Share Document