An analytical model for the face wrinkling failure prediction of metallic corrugated core sandwich columns in dynamic compression

2015 ◽  
Vol 92 ◽  
pp. 290-303 ◽  
Author(s):  
Jae-Yong Lim ◽  
Hilary Bart-Smith
1968 ◽  
Vol 90 (2) ◽  
pp. 308-316
Author(s):  
R. Kilburn

An analytical model of an electromagnetically operated friction-disk clutch is constructed in order to determine the wear on the clutch face. The face consists of two materials—metal rings and friction material. The pertinent differential equations, derived in the Appendexes, are solved numerically. The effects of varying such parameters as hardness, residual magnetism, and elastic constants are studied.


Author(s):  
Jinhui Liu ◽  
Wantao Ding ◽  
Mingbin Wang

Based on the kinematic approach of the limit analysis and slip-line theories, this paper proposes a new 2D analytical model to evaluate the collapse support pressure to ensure the face stability of a circular tunnel in purely cohesive soils driven by a shield. The normality conditions, the yield criterion and the vertical soil arching effect are considered in the analytical model. Two upper bound solutions corresponding to the ratio of the cover to the diameter (C/D) are derived from considering the mechanisms based on the motion of rigid multi-blocks. Comparisons are made with existing upper and lower bound solutions published in previous articles. The results are close to the solutions of practical engineering. The failure mechanisms proposed in this study provide a better explanation for the failure process in the heading of the tunnel face.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246720 ◽  
Author(s):  
Mingxin Xu ◽  
Peter Lee ◽  
David Collins

Filtering facepiece respirators (FFRs) and medical masks are widely used to reduce the inhalation exposure of airborne particulates and biohazardous aerosols. Their protective capacity largely depends on the fraction of these that are filtered from the incoming air volume. While the performance and physics of different filter materials have been the topic of intensive study, less well understood are the effects of mask sealing. To address this, we introduce an approach to calculate the influence of face-seal leakage on filtration ratio and fit factor based on an analytical model and a finite element method (FEM) model, both of which take into account time-dependent human respiration velocities. Using these, we calculate the filtration ratio and fit factor for a range of ventilation resistance values relevant to filter materials, 500–2500 Pa∙s∙m−1, where the filtration ratio and fit factor are calculated as a function of the mask gap dimensions, with good agreement between analytical and numerical models. The results show that the filtration ratio and fit factor are decrease markedly with even small increases in gap area. We also calculate particle filtration rates for N95 FFRs with various ventilation resistances and two commercial FFRs exemplars. Taken together, this work underscores the critical importance of forming a tight seal around the face as a factor in mask performance, where our straightforward analytical model can be readily applied to obtain estimates of mask performance.


2018 ◽  
Vol 41 ◽  
Author(s):  
Samuel G. B. Johnson

AbstractZero-sum thinking and aversion to trade pervade our society, yet fly in the face of everyday experience and the consensus of economists. Boyer & Petersen's (B&P's) evolutionary model invokes coalitional psychology to explain these puzzling intuitions. I raise several empirical challenges to this explanation, proposing two alternative mechanisms – intuitive mercantilism (assigning value to money rather than goods) and errors in perspective-taking.


1997 ◽  
Vol 161 ◽  
pp. 203-218 ◽  
Author(s):  
Tobias C. Owen

AbstractThe clear evidence of water erosion on the surface of Mars suggests an early climate much more clement than the present one. Using a model for the origin of inner planet atmospheres by icy planetesimal impact, it is possible to reconstruct the original volatile inventory on Mars, starting from the thin atmosphere we observe today. Evidence for cometary impact can be found in the present abundances and isotope ratios of gases in the atmosphere and in SNC meteorites. If we invoke impact erosion to account for the present excess of129Xe, we predict an early inventory equivalent to at least 7.5 bars of CO2. This reservoir of volatiles is adequate to produce a substantial greenhouse effect, provided there is some small addition of SO2(volcanoes) or reduced gases (cometary impact). Thus it seems likely that conditions on early Mars were suitable for the origin of life – biogenic elements and liquid water were present at favorable conditions of pressure and temperature. Whether life began on Mars remains an open question, receiving hints of a positive answer from recent work on one of the Martian meteorites. The implications for habitable zones around other stars include the need to have rocky planets with sufficient mass to preserve atmospheres in the face of intensive early bombardment.


Author(s):  
G.J.C. Carpenter

In zirconium-hydrogen alloys, rapid cooling from an elevated temperature causes precipitation of the face-centred tetragonal (fct) phase, γZrH, in the form of needles, parallel to the close-packed <1120>zr directions (1). With low hydrogen concentrations, the hydride solvus is sufficiently low that zirconium atom diffusion cannot occur. For example, with 6 μg/g hydrogen, the solvus temperature is approximately 370 K (2), at which only the hydrogen diffuses readily. Shears are therefore necessary to produce the crystallographic transformation from hexagonal close-packed (hep) zirconium to fct hydride.The simplest mechanism for the transformation is the passage of Shockley partial dislocations having Burgers vectors (b) of the type 1/3<0110> on every second (0001)Zr plane. If the partial dislocations are in the form of loops with the same b, the crosssection of a hydride precipitate will be as shown in fig.1. A consequence of this type of transformation is that a cumulative shear, S, is produced that leads to a strain field in the surrounding zirconium matrix, as illustrated in fig.2a.


Sign in / Sign up

Export Citation Format

Share Document