Online reconstruction of surface topography along the entire cutting path in peripheral milling

2020 ◽  
Vol 185 ◽  
pp. 105885
Author(s):  
Chang Liu ◽  
Lei Gao ◽  
Guofeng Wang ◽  
Weiwei Xu ◽  
Xiaogeng Jiang ◽  
...  
Author(s):  
Hui-Qun Chen ◽  
Qing-Hui Wang

Based on the Z-map model of a workpiece and the dynamic cutting forces model of peripheral milling in which the regenerative effect of tool radial runout and axial drift are considered, a model for the prediction of surface topography in peripheral milling operations is presented. According to the stability lobe diagram obtained by the zero-order analytical method, the relationship between spindle speed and surface topography, the tool radial runout, and the axial drift following the chatter are studied. The results show that a stable cutting status but a poor surface finish is obtained at the spindle speeds at which the dominant frequency of the milling system is integral multiples of the selected machining frequency, and a stable cutting status with a good surface finish can be obtained near and on the left side of the resonant spindle speeds determined by the predicted stability lobe diagram. The motion equations of any tooth end mill for peripheral milling are established, and these equations are based on the transformation matrix and the vector operation principle of motion-homogeneous coordinates. In addition, the simulation algorithm and the system of surface topography generated in peripheral milling are given based on the Z-map model. Cutting tests are carried out, and good agreement between the measured surface topographies and the topographies predicted by the model in this study is found in terms of their shape, magnitude, feed mark, profile height of cross-section, and surface roughness. The simulation results show that the milling surface roughness increases with the increase in feed per tooth, which further shows that this simulation system has high credibility. Thus, the simulation and experimental results can provide some practical instructions for the actual peripheral milling in determining the optimal machining conditions.


CIRP Annals ◽  
2009 ◽  
Vol 58 (1) ◽  
pp. 93-96 ◽  
Author(s):  
M. Arizmendi ◽  
F.J. Campa ◽  
J. Fernández ◽  
L.N. López de Lacalle ◽  
A. Gil ◽  
...  

Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
P.G. Pawar ◽  
P. Duhamel ◽  
G.W. Monk

A beam of ions of mass greater than a few atomic mass units and with sufficient energy can remove atoms from the surface of a solid material at a useful rate. A system used to achieve this purpose under controlled atmospheres is called an ion miliing machine. An ion milling apparatus presently available as IMMI-III with a IMMIAC was used in this investigation. Unless otherwise stated, all the micro milling operations were done with Ar+ at 6kv using a beam current of 100 μA for each of the two guns, with a specimen tilt of 15° from the horizontal plane.It is fairly well established that ion bombardment of the surface of homogeneous materials can produce surface topography which resembles geological erosional features.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Sign in / Sign up

Export Citation Format

Share Document