Quantitative detection and metabolic profile analysis of metabolites of tricarboxylic acid cycle and amino acids in psoriasis serum before and after receiving monoclonal antibody treatment by one-pot GC-MS derivatization

2021 ◽  
Vol 460 ◽  
pp. 116478
Author(s):  
Jiaxing Fan ◽  
Jianglu Zhou ◽  
Shenmin Su ◽  
Yunqiu Yu ◽  
Lihong Chen ◽  
...  
Metabolites ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 155 ◽  
Author(s):  
Oluyemi S. Falegan ◽  
Shanna A. Arnold Egloff ◽  
Andries Zijlstra ◽  
M. Eric Hyndman ◽  
Hans J. Vogel

Renal cell carcinoma (RCC) is a heterogeneous malignancy which often develops and progresses asymptomatically. Benign oncocytomas are morphologically similar to malignant chromophobe RCC and distinguishing between these two forms on cross-sectional imaging remains a challenge. Therefore, RCC-specific biomarkers are urgently required for accurate and non-invasive, pre-surgical diagnosis of benign lesions. We have previously shown that dysregulation in glycolytic and tricarboxylic acid cycle intermediates can distinguish benign lesions from RCC in a stage-specific manner. In this study, preoperative fasting urine samples from patients with renal masses were assessed by ¹H nuclear magnetic resonance (NMR). Significant alterations in levels of tricarboxylic acid cycle intermediates, carnitines and its derivatives were detected in RCC relative to benign masses and in oncocytomas vs. chromophobe RCC. Orthogonal Partial Least Square Discriminant Analysis plots confirmed stage discrimination between benign vs. pT1 (R2 = 0.42, Q2 = 0.27) and benign vs. pT3 (R2 = 0.48, Q2 = 0.32) and showed separation for oncocytomas vs. chromophobe RCC (R2 = 0.81, Q2 = 0.57) and oncocytomas vs. clear cell RCC (R2 = 0.32, Q2 = 0.20). This study validates our previously described metabolic profile distinguishing benign tumors from RCC and presents a novel metabolic signature for oncocytomas which may be exploited for diagnosis before cross-sectional imaging.


1991 ◽  
Vol 260 (3) ◽  
pp. E436-E439 ◽  
Author(s):  
M. K. Spencer ◽  
A. Katz ◽  
I. Raz

The effects of epinephrine (E) and insulin infusions on the contents of tricarboxylic acid cycle intermediates (TCAI), adenine nucleotides and their catabolites, and amino acids in skeletal muscle have been investigated. Eight men were studied on two separate occasions: 1) during 120 min of euglycemic hyperinsulinemia (UH, approximately 5 mM; 40 mU.m-2.min-1) and 2) during UH while E was infused (UHE, 0.05 microgram.kg-1.min-1). Biopsies were taken from the quadriceps femoris muscle before and after each clamp. The sum of citrate, malate, and fumarate in muscle did not change significantly during UH (P greater than 0.05) but doubled during UHE (P less than 0.001). There were no significant changes in any of the adenine nucleotides, their catabolites (including inosine monophosphate), or aspartate during UH and UHE (P greater than 0.05); nor were there any significant changes in pyruvate or alanine contents during UH (P greater than 0.05). On the other hand, there were significant increases in pyruvate and alanine contents during UHE (P less than 0.01 and 0.05, respectively), suggesting that there was increased production of 2-oxoglutarate (a TCAI) via the alanine aminotransferase (ALT) reaction. It is concluded that E infusion increases the contents of TCAI in human skeletal muscle, and it is likely that at least part of the increase is attributable to increased flux through the ALT reaction.


1992 ◽  
Vol 262 (4) ◽  
pp. C975-C979 ◽  
Author(s):  
M. K. Spencer ◽  
Z. Yan ◽  
A. Katz

The effect of preexercise muscle glycogen content on the metabolic responses to exercise has been investigated. Seven men cycled at a work load calculated to elicit 75% of maximal oxygen uptake [211 +/- 17 (SE) W] on two occasions: 1) to fatigue (37.2 +/- 5.3 min) and 2) at the same work load and for the same duration as the first. Biopsies were obtained from the quadriceps femoris muscle before and after exercise. Before the first experiment, muscle glycogen was lowered by exercise and diet, and before the second experiment, muscle glycogen was elevated. In the low-glycogen condition (LG), muscle glycogen decreased from 182 +/- 15 at rest to 7 +/- 4 mmol glucosyl units/kg dry wt at fatigue, while in the high-glycogen condition (HG), glycogen decreased from 725 +/- 31 at rest to 353 +/- 53 mmol glucosyl units/kg dry wt at the end of exercise. Hexose monophosphates were not increased after LG exercise but increased approximately fivefold after HG exercise. Lactate increased more during HG exercise (LG = 16 +/- 5, HG = 61 +/- 7 mmol/kg dry wt; P less than or equal to 0.001), whereas IMP increased more during LG (LG = 2.8 +/- 0.6, HG = 0.9 +/- 0.2 mmol/kg dry wt; P less than or equal to 0.05). The increases in the sum of tricarboxylic acid cycle intermediates (TCAI; citrate+malate+fumarate) and acetylcarnitine (which is in equilibrium with acetyl CoA) were significantly greater during HG exercise (P less than or equal to 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yiyong Wei ◽  
Donghang Zhang ◽  
Jin Liu ◽  
Mengchan Ou ◽  
Peng Liang ◽  
...  

Abstract Background Metabolic status can be impacted by general anesthesia and surgery. However, the exact effects of general anesthesia and surgery on systemic metabolome remain unclear, which might contribute to postoperative outcomes. Methods Five hundred patients who underwent abdominal surgery were included. General anesthesia was mainly maintained with sevoflurane. The end-tidal sevoflurane concentration (ETsevo) was adjusted to maintain BIS (Bispectral index) value between 40 and 60. The mean ETsevo from 20 min after endotracheal intubation to 2 h after the beginning of surgery was calculated for each patient. The patients were further divided into low ETsevo group (mean − SD) and high ETsevo group (mean + SD) to investigate the possible metabolic changes relevant to the amount of sevoflurane exposure. Results The mean ETsevo of the 500 patients was 1.60% ± 0.34%. Patients with low ETsevo (n = 55) and high ETsevo (n = 59) were selected for metabolomic analysis (1.06% ± 0.13% vs. 2.17% ± 0.16%, P < 0.001). Sevoflurane and abdominal surgery disturbed the tricarboxylic acid cycle as identified by increased citrate and cis-aconitate levels and impacted glycometabolism as identified by increased sucrose and D-glucose levels in these 114 patients. Glutamate metabolism was also impacted by sevoflurane and abdominal surgery in all the patients. In the patients with high ETsevo, levels of L-glutamine, pyroglutamic acid, sphinganine and L-selenocysteine after sevoflurane anesthesia and abdominal surgery were significantly higher than those of the patients with low ETsevo, suggesting that these metabolic changes might be relevant to the amount of sevoflurane exposure. Conclusions Sevoflurane anesthesia and abdominal surgery can impact principal metabolic pathways in clinical patients including tricarboxylic acid cycle, glycometabolism and glutamate metabolism. This study may provide a resource data for future studies about metabolism relevant to general anaesthesia and surgeries. Trial registration www.chictr.org.cn. identifier: ChiCTR1800014327.


2013 ◽  
Vol 129 (1) ◽  
pp. 107-119 ◽  
Author(s):  
Mussie G. Hadera ◽  
Olav B. Smeland ◽  
Tanya S. McDonald ◽  
Kah Ni Tan ◽  
Ursula Sonnewald ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document