High-speed shadow imaging in internal flow pattern and macroscopic characteristics of a R134a flash-boiling spray discharged through a vertical twin-orifice atomizer

2015 ◽  
Vol 75 ◽  
pp. 224-236 ◽  
Author(s):  
Dehao Ju ◽  
Junhua Fang ◽  
Tingting Zhang ◽  
Xinqi Qiao ◽  
Jin Xiao ◽  
...  
Energy ◽  
2016 ◽  
Vol 114 ◽  
pp. 1240-1250 ◽  
Author(s):  
Dehao Ju ◽  
Zhong Huang ◽  
Xiaoxu Jia ◽  
Xinqi Qiao ◽  
Jin Xiao ◽  
...  

1976 ◽  
Vol 98 (3) ◽  
pp. 390-399 ◽  
Author(s):  
D. Eckardt

Detailed accurate measurements of velocities, directions, and fluctuation intensities were performed with a newly developed laser velocimeter in the internal flow field of a radial discharge impeller, running at tip speeds up to 400 m/s. Relative flow distributions are presented in five measurement areas from inducer inlet to impeller discharge. The impeller flow pattern, which coincides largely with potential-theory calculations in the axial inducer, becomes more and more reversed when the flow separates from the blade suction side, developing a rapidly increasing wake in the radial impeller. The observed secondary flow pattern and effects of channel curvature and system rotation on turbulence structure are discussed with respect to separation onset and jet/wake interaction.


2017 ◽  
Vol 105 ◽  
pp. 85-93 ◽  
Author(s):  
Ke Yan ◽  
Yatai Wang ◽  
Yongsheng Zhu ◽  
Jun Hong

2016 ◽  
Vol 26 (4) ◽  
pp. 377-410 ◽  
Author(s):  
Dehao Ju ◽  
Chunhai Wang ◽  
Xinqi Qiao ◽  
Jin Xiao ◽  
Zhen Huang

2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Rashid Ali ◽  
Björn Palm ◽  
Claudi Martin-Callizo ◽  
Mohammad H. Maqbool

This paper presents the visualization results obtained for an experimental study of R134a during flow boiling in a horizontal microchannel. The microchannel used was a fused silica tube having an internal diameter of 781 μm, a heated length of 191 mm, and was coated with a thin, transparent, and electrically conductive layer of indium-tin-oxide (ITO) on the outer surface. The operating parameters during the experiments were: mass flux 100–400 kg/m2 s, heat flux 5–45 kW/m2, saturation temperatures 25 and 30 °C, corresponding to saturation pressures of 6.65 bar and 7.70 bar and reduced pressures of 0.163 and 0.189, respectively. A high speed camera with a close up lens was used to capture the flow patterns that evolved along the channel. Flow pattern maps are presented in terms of the superficial gas and liquid velocity and in terms of the Reynolds number and vapor quality plots. The results are compared with some flow pattern maps for conventional and micro scale channels available in the literature. Rigorous boiling and increased coalescence rates were observed with an increase in the heat flux.


Author(s):  
Yuta Uchiyama ◽  
Yutaka Abe ◽  
Akiko Fujiwara ◽  
Hideki Nariai ◽  
Eiji Matsuo ◽  
...  

For the safety design of the Fast Breeder Reactor (FBR), it is strongly required that the post accident heat removal (PAHR) is achieved after a postulated core disruptive accident (CDA). In the PAHR, it is important that the molten core material is solidified in sodium coolant which has high boiling point. Thus it is necessary to estimate the jet breakup length which is the distance that the molten core material is solidified in sodium coolant. In the previous studies (Abe et al., 2006), it is observed that the jet is broken up with fragmenting in water coolant by using simulated core material. It is pointed out that the jet breakup behavior is significantly influenced by the fragmentation behavior on the molten material jet surface in the coolant. However, the relation between the jet breakup behavior and fragmentation on the jet surface during a CDA for a FBR is not elucidated in detail yet. The objective of the present study is to elucidate the influence of the internal flow in the jet and fragmentation behavior on the jet breakup behavior. The Fluorinert™ (FC-3283) which is heavier than water and is transparent fluid is used as the simulant material of the core material. It is injected into the water as the coolant. The jet breakup behavior of the Fluorinert™ is observed by high speed camera to obtain the fragmentation behavior on the molten material jet surface in coolant in detail. To be cleared the effect of the internal flow of jet and the surrounding flow structure on the fragmentation behavior, the velocity distribution of internal flow of the jet is measured by PIV (Particle Image Velocimetry) technique with high speed camera. From the obtained images, unstable interfacial wave is confirmed at upstream of the jet surface, and the wave grows along the jet-water surface in the flow direction. The fragments are torn apart at the end of developed wave. By using PIV analysis, the velocity at the center of the jet is fast and it suddenly decreases near the jet surface. This means that the shear force acts on the jet and water surface. From the results of experiment, the correlation between the interfacial behavior of the jet and the generation process of fragments are discussed. In addition, the influence of surface instability of the jet induced by the relative velocity between Fluorinert™ and coolant water on the breakup behavior is also discussed.


2005 ◽  
Vol 2005 (1) ◽  
pp. 77-89 ◽  
Author(s):  
W. Chon ◽  
R. S. Amano

When the airflow patterns inside a lawn mower deck are understood, the deck can be redesigned to be efficient and have an increased cutting ability. To learn more, a combination of computational and experimental studies was performed to investigate the effects of blade and housing designs on a flow pattern inside a1.1mwide corotating double-spindle lawn mower deck with side discharge. For the experimental portion of the study, air velocities inside the deck were measured using a laser Doppler velocimetry (LDV) system. A high-speed video camera was used to observe the flow pattern. Furthermore, noise levels were measured using a sound level meter. For the computational fluid dynamics (CFD) work, several arbitrary radial sections of a two-dimensional blade were selected to study flow computations. A three-dimensional, full deck model was also developed for realistic flow analysis. The computational results were then compared with the experimental results.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668529 ◽  
Author(s):  
Wen-wu Song ◽  
Li-chao Wei ◽  
Jie Fu ◽  
Jian-wei Shi ◽  
Xiu-xin Yang ◽  
...  

The backflow vortexes at the suction connection in high-speed centrifugal pumps have negative effect on the flow field. Setting an orifice plate in front of the inducer is able to decrease the negative effect caused by backflow vortexes. The traditional plate is able to partially control the backflow vortexes, but a small part of the vortex is still in the inlet and the inducer. Four new types of orifice plates were created, and the control effects on backflow vortexes were analyzed. The ANSYS-CFX software was used to numerically simulate a high-speed centrifugal pump. The variations of streamline and velocity vectors at the suction connection were analyzed. Meanwhile, the effects of these plates on the impeller pressure and the internal flow field of the inducer were analyzed. Numerically, simulation and experimental data analysis methods were used to compare the head and efficiency of the high-speed pumps. The results show that the C-type orifice plate can improve the backflow vortex, reduce the low-pressure area, and improve the hydraulic performance of the high-speed pump.


Author(s):  
Sebastian Bornschlegel ◽  
Chris Conrad ◽  
Lisa Eichhorn ◽  
Michael Wensing

Flashboiling denotes the phenomenon of rapid evaporation and atomization at nozzles, which occurs when fluidsare injected into ambient pressure below their own vapor pressure. It happens in gasoline direct injection (GDI) engines at low loads, when the cylinder pressure is low during injection due to the closed throttle valve. The fuel temperature at the same time approaches cylinder head coolant temperature due to the longer dwell time of the fuel inside the injector. Flash boiling is mainly beneficial for atomization quality, since it produces small droplet sizes and relative broad and homogenous droplet distributions within the spray. Coherently, the penetration depth normally decreases due to the increased aerodynamic drag. Therefore the thermal properties of injectors are often designed to reach flash boiling conditions as early as possible. At the same time, flash boiling significantly increases the risk of undesired spray collapsing. In this case, neighbouring jets converge and form a single jet. Due to the now concentrated mass, penetration depth is enhanced again and can lead to liner or piston wetting in addition to the overall diminished mixture formation.In order to understand the underlying physics, it is important to study the occurring phenomena flashboiling and jet-to-jet interacting i.e. spray collapsing separately. To this end, single hole injectors are built up to allow for an isolated investigation of flashboiling. The rapid expansion at the nozzle outlet is visualized with a microscopic high speed setup and the forces that lead to the characteristic spray expansion are discussed. Moreover, the results on the macroscopic spray in terms of penetration, cone angles and vapor phase are shown with a high speed Schlieren setup. Resulting droplet diameters and velocities are measured using LDA/PDA.As a result, we find a comprehensive picture of flash boiling. The underlying physics can be described and discussed for the specific case of high pressure injection at engine relevant nozzle geometries and conditions, but independently from neighbouring jets. These findings provide the basis to understand and investigate flashboilingand jet-to-jet interaction as distinct, but interacting subjects rather than a combined phenomenon.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4750 


Sign in / Sign up

Export Citation Format

Share Document