Insights into the nonlinear behaviors of dual-rotor systems with inter-shaft rub-impact under co-rotation and counter-rotation conditions

Author(s):  
Pingchao Yu ◽  
Li Hou ◽  
Cun Wang ◽  
Guo Chen
2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.


2021 ◽  
Author(s):  
Ethan S. Genter ◽  
Cory A. Seidel ◽  
David A. Peters
Keyword(s):  

2019 ◽  
Vol 1 (7) ◽  
pp. 42-45
Author(s):  
V. A. Golubkov ◽  
V. F. Shishlakov ◽  
A. G. Fedorenko ◽  
E. Yu. Vataeva

Electromechanical devices consist mainly of rotor systems. Vibration is the result of the interaction of the elements of the rotor system and is largely determined by the accuracy of manufacturing elements at the production stage and defects arising in the process of operation. The main components of the rotor systems that affect vibration are bearings. To determine the technical condition of the bearings and the service life of the rotor system, it is necessary to accurately measure the unobservable vibrations of the rotor. The article describes the model of the channel for measuring the vibration of an electromechanical system, built using the apparatus of bond graphs. The transfer function is obtained by analyzing the signal flow graph. The systematic and random errors of vibration measurement are analyzed depending on the mass ratio between the system case and the vibration transducer for various sensor masses and attachment rigidity.


2021 ◽  
pp. 0958305X2110114
Author(s):  
Veli Yilanci ◽  
Muhammed Sehid Gorus ◽  
Sakiru Adebola Solarin

This paper aims to explore the convergence of per capita carbon and ecological footprints in G7 countries during 1961–2016. For this purpose, we propose a new unit root test in the panel setting–the panel Fourier threshold unit root test. This test takes into consideration both multiple smooth structural changes and nonlinearity. According to the literature, the power of the nonlinear unit root tests is reduced in the case of ignoring structural breaks. Therefore, we expect to get more reliable empirical findings by utilizing this methodology. The empirical results of this paper show that these series have nonlinear behaviors for the period 1961–2016. Furthermore, they demonstrate that the absolute convergence hypothesis is valid in G7 countries for both regimes. Thus, governments can conduct common environmental policies, including international climate summits and agreements, instead of national-based policies to mitigate environmental deterioration in their countries.


Author(s):  
Eman Moustafa ◽  
Abdel-Azem Sobaih ◽  
Belal Abozalam ◽  
Amged Sayed A. Mahmoud

AbstractChaotic phenomena are observed in several practical and scientific fields; however, the chaos is harmful to systems as they can lead them to be unstable. Consequently, the purpose of this study is to analyze the bifurcation of permanent magnet direct current (PMDC) motor and develop a controller that can suppress chaotic behavior resulted from parameter variation such as the loading effect. The nonlinear behaviors of PMDC motors were investigated by time-domain waveform, phase portrait, and Floquet theory. By varying the load torque, a period-doubling bifurcation appeared which in turn led to chaotic behavior in the system. So, a fuzzy logic controller and developing the Floquet theory techniques are applied to eliminate the bifurcation and the chaos effects. The controller is used to enhance the performance of the system by getting a faster response without overshoot or oscillation, moreover, tends to reduce the steady-state error while maintaining its stability. The simulation results emphasize that fuzzy control provides better performance than that obtained from the other controller.


Sign in / Sign up

Export Citation Format

Share Document