Reduction of structural vibrations with the piezoelectric stacks ring

2020 ◽  
Vol 64 (1-4) ◽  
pp. 729-736
Author(s):  
Jincheng He ◽  
Xing Tan ◽  
Wang Tao ◽  
Xinhai Wu ◽  
Huan He ◽  
...  

It is known that piezoelectric material shunted with external circuits can convert mechanical energy to electrical energy, which is so called piezoelectric shunt damping technology. In this paper, a piezoelectric stacks ring (PSR) is designed for vibration control of beams and rotor systems. A relative simple electromechanical model of an Euler Bernoulli beam supported by two piezoelectric stacks shunted with resonant RL circuits is established. The equation of motion of such simplified system has been derived using Hamilton’s principle. A more realistic FEA model is developed. The numerical analysis is carried out using COMSOL® and the simulation results show a significant reduction of vibration amplitude at the specific natural frequencies. Using finite element method, the influence of circuit parameters on lateral vibration control is discussed. A preliminary experiment of a prototype PSR verifies the PSR’s vibration reduction effect.

2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
Saber Mohammadi ◽  
Akram Khodayari

Piezoelectric transducers in conjunction with appropriate electric networks can be used as a mechanical energy dissipation device. Alternatively, undesired mechanical energy of a structure could be converted into electrical energy that can be dissipated through a shunt network in the form of Joule heating. This paper presents an experimental method to calculate damping energy in mechanical systems. However, the mathematical description of damping mechanism is much more complicated, and any process responsible for the occurrence of damping is very intricate. Structural and piezoelectric damping are calculated and analysed in the case of pulse switching or SSDI semiactive vibration control technique. This technique which was developed in the field of piezoelectric damping consists in triggering the inverting switch on each extremum of the piezoelectric voltage which induces an increase of the electromechanical energy conversion.


2021 ◽  
Vol 11 (20) ◽  
pp. 9404
Author(s):  
Yi Wang ◽  
Thomas Kletschkowski

A smart exciter coupled to cabin panels can be used as a new type of loudspeaker for emergency announcements in the aircraft cabin. The same device can also be used as a semi-active vibration control system which is effective in reducing the amplitude of structural vibration. The objective of this paper is to investigate the potential of vibration reduction using a smart exciter in combination with an optimized resistive-inductive shunt circuit, which serves as an absorbing network. First, the vibration reduction effect has been analyzed numerically using a simulation framework realized with COMSOL and MATLAB/Simulink. In a second step, the reduction effect of the smart exciter together with a resistive-inductive shunt circuit, which is produced by the Center of Applied Aeronautical Research (Zentrum für Angewandte Luftfahrtforschung GmbH, Hamburg, Germany), has been investigated experimentally. The results presented here prove that the smart exciter together with a resistive-inductive shunt can be highly effective in reducing structural vibrations.


2018 ◽  
Vol 7 (2-1) ◽  
pp. 433
Author(s):  
K. Sri Vamsi Krishna ◽  
Shiva Prasad ◽  
R. Sabari Vihar ◽  
K. Babitha ◽  
K Veeranjaneyulu ◽  
...  

The main objective of this study is to increase the aerodynamic efficiency of turbine mounted novel wing. The main motive behind this work is to reduce the drag by attaining the positive velocity gradient and generate power by converting the stagnation pressure which also acts as emergency power source. By using the energy source of free stream air, Mechanical energy is converted into electrical energy. The obtained power is presented in terms of voltage generated at various angles of attack with different Reynolds number. Experimental analysis is carried out for NACA4415 airfoil at various angles with respect to free stream ranging from 0deg to 30deg from laminar to turbulent Reynolds number. The results were obtained using the research tunnel at IARE aerodynamic facility center. The aerodynamic advantage of this design in terms of voltage is 9.5 V at 35m/s which can be utilized for the aircraft on board power systems.


2019 ◽  
Vol 17 (1) ◽  
pp. 95
Author(s):  
Jumadi Tangko ◽  
Remigius Tandioga ◽  
Ismail Djufri ◽  
Riza Haardiyanti

Flywheel is a rotating mechanical device, which is generally used on four-wheeled vehicles. Flywheel has a moment of inertia that is able to withstand changes in rotational speed. The energy in flywheel is mechanical energy. This mechanical energy will be converted by generators into electrical energy. At the flywheel-based power plant, tests are carried out in the form of rotation, the generator power of the generator under no load or load conditions, and the time needed for this generator to survive. The results showed that the ability of the flywheel-based power plant in the condition without a backup supply to the motor in the condition of a generator without a load is able to generate power of 860.1 W for 22 seconds, while in a load-bearing generator capable of generating electricity by 708.75 W for 18 seconds 


2021 ◽  
Vol 34 (2) ◽  
pp. 157-172
Author(s):  
Deepak Anand ◽  
Singh Sambyal ◽  
Rakesh Vaid

The demand for energy is increasing tremendously with modernization of the technology and requires new sources of renewable energy. The triboelectric nanogenerators (TENG) are capable of harvesting ambient energy and converting it into electricity with the process of triboelectrification and electrostatic-induction. TENG can convert mechanical energy available in the form of vibrations, rotation, wind and human motions etc., into electrical energy there by developing a great scope for scavenging large scale energy. In this review paper, we have discussed various modes of operation of TENG along with the various factors contributing towards its efficiency and applications in wearable electronics.


2019 ◽  
Vol 4 (2) ◽  
pp. 50-55
Author(s):  
Syarif Moh Rofiq Al- Ghony ◽  
Subuh Isnur Haryudo ◽  
Jati Widyo Leksono

The electric motor is a device that serves to transform electrical energy into mechanical energy of motion. In this case the designed control system motor 3 phase by Smartphones through bluetooth network to find out the effective range of extremity. The methods used in the form of data capture of measurement effective range the furthest that can be reached by bluetooth to activate relay SPDT and motor 3 phase. Results of testing the most effective distance of the otomasisasi control system of motor 3 phase maximum as far as 15 meters with a time of pause 0.5 seconds.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


Sign in / Sign up

Export Citation Format

Share Document