scholarly journals Detection of target-site and metabolic resistance to pyrethroids in the bed bug Cimex lectularius in Berlin, Germany

Author(s):  
Arlette Vander Pan ◽  
Carola Kuhn ◽  
Erik Schmolz ◽  
Georg von Samson-Himmelstjerna ◽  
Jürgen Krücken
Author(s):  
María A González-Morales ◽  
Zachary DeVries ◽  
Angela Sierras ◽  
Richard G Santangelo ◽  
Madhavi L Kakumanu ◽  
...  

Abstract Cimex lectularius L. populations have been documented worldwide to be resistant to pyrethroids and neonicotinoids, insecticides that have been widely used to control bed bugs. There is an urgent need to discover new active ingredients with different modes of action to control bed bug populations. Fipronil, a phenylpyrazole that targets the GABA receptor, has been shown to be highly effective on bed bugs. However, because fipronil shares the same target site with dieldrin, we investigated the potential of fipronil resistance in bed bugs. Resistance ratios in eight North American populations and one European population ranged from 1.4- to >985-fold, with highly resistant populations on both continents. We evaluated metabolic resistance mechanisms mediated by cytochrome P450s, esterases, carboxylesterases, and glutathione S-transferases using synergists and a combination of synergists. All four detoxification enzyme classes play significant but variable roles in bed bug resistance to fipronil. Suppression of P450s and esterases with synergists eliminated resistance to fipronil in highly resistant bed bugs. Target-site insensitivity was evaluated by sequencing a fragment of the Rdl gene to detect the A302S mutation, known to confer resistance to dieldrin and fipronil in other species. All nine populations were homozygous for the wild-type genotype (susceptible phenotype). Highly resistant populations were also highly resistant to deltamethrin, suggesting that metabolic enzymes that are responsible for pyrethroid detoxification might also metabolize fipronil. It is imperative to understand the origins of fipronil resistance in the development or adoption of new active ingredients and implementation of integrated pest management programs.


Author(s):  
Mohammad Akhoundi ◽  
Dahlia Chebbah ◽  
Denis Sereno ◽  
Anthony Marteau ◽  
Julie Jan ◽  
...  

Bed bugs, Cimex lectularius and C. hemipterus, are common blood-sucking ectoparasites of humans with a large geographical distribution, worldwide. In France, little is known about the status of bed bugs’ infestation and their resistance to insecticides, particularly, pyrethroids. Here, we aimed to find mutations in the kdr gene, known to be involved in resistance to insecticides. We gathered bed bugs from various infested locations, including 17 private houses, 12 HLM building complex, 29 apartments, 2 EHPAD, and 2 immigrants’ residences. A total of 1211 bed bugs were collected and morphologically identified as C. lectularius. Two fragments of the kdr gene, encompassing codons V419L and L925I, were successfully amplified for 156 specimens. We recorded sense mutation in the first amplified fragment (kdr1) in 89 out of 156 (57%) samples, in which in 61 out of 89 (68.5%) sequences, a change of valine (V) into leucine (L) V419L was observed. Within the second fragment (kdr2), a homozygous mutation was recorded in 73 out of 156 (46.7%) specimens at the codon 925. At this position, 43 out of 73 (58.9%) specimens had a sense mutation leading to the replacement of leucine (L) by isoleucine (I). Among 162 mutant sequences analyzed (89 for the kdr1 fragment and 73 for the kdr2 one), we detected single point mutation in 26.6%, while 73.4% presented the mutation in both kdr1 and kdr2 fragments. All modifications recorded in bed bug populations of Paris are described to be involved in the knockdown resistance (kdr) against pyrethroids.


Author(s):  
Raymond Berry

AbstractThe bed bug, Cimex lectularius L., is a common ectoparasite found to live among its vertebrate hosts. Antennal segments in bugs are critical for sensing multiple cues in the environment for survival. To determine whether the thermo receptors of bed bugs are located on their antennae; innovative bioassays were created to observe the choice between heated and unheated stimuli and to characterize the response of bugs to a heat source. Additionally, the effect of complete antenectomized segments on heat detection were evaluated. Heat, carbon dioxide, and moisture are cues that are found to activate bed bug behavior; a temperature at 38°C was used to assess the direction/degree at which the insect reacts to the change in distance from said stimulus. Using a lightweight spherical ball suspended by air through a vacuum tube, bed bugs and other insects are able to move in 360° while on a stationary point. Noldus EthoVision XT was used to capture video images and to track the bed bugs during 5-min bioassays. A bioassay was created using four Petri dish arenas to observe bed bug attraction to heat based on antennae segments at 40°C. The purpose of this study was to evaluate the effects of heat on complete antenectomized segments of the antennae. The results in this experiment suggest that bed bugs detect and are attracted to heat modulated by nutritional status. Learning the involvement of antennae segments in heat detection will help identify the location and role of thermoreceptors for bed bug host interaction.


2016 ◽  
Vol 6 (12) ◽  
pp. 4059-4066 ◽  
Author(s):  
Toby Fountain ◽  
Mark Ravinet ◽  
Richard Naylor ◽  
Klaus Reinhardt ◽  
Roger K Butlin

Abstract The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides, and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species.


2019 ◽  
Author(s):  
Walter Fabricio Silva Martins ◽  
Craig Stephen Wilding ◽  
Alison Taylor Isaacs ◽  
Emily Joy Rippon ◽  
Karine Megy ◽  
...  

ABSTRACTCulex quinquefasciatusplays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackleC. quinquefasciatusvectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, includingC. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistantC. quinquefasciatuswas explored to identify candidate genes associated with insecticide resistance. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1h exposure and 58.02% after 4h. Genotyping of the G119SAce-1target site mutation detected a highly significant association (p<0.0001; OR=25) between resistance andAce1-119S. However, synergist assays using the P450 inhibitor PBO or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450Cyp6z18showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb-resistance in UgandanC. quinquefasciatusis mediated by both target-site mechanisms and over-expression of detoxification enzymes.


2019 ◽  
Vol 143 (2) ◽  
pp. AB236 ◽  
Author(s):  
Adnan Divjan ◽  
Hadler A. daSilva ◽  
Luis M. Acosta ◽  
Andrew G. Rundle ◽  
Andrzej Weichsel ◽  
...  
Keyword(s):  

Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 133 ◽  
Author(s):  
Sudip Gaire ◽  
Michael Scharf ◽  
Ameya Gondhalekar

Management of the common bed bug (Cimex lectularius L.) necessitates the use of multiple control techniques. In addition to synthetic pesticides and mechanical interventions, plant-derived essential oils represent one of the control options. Mixtures of two or more essential oil components (monoterpenoids) exhibit synergistic toxicity effects against insects due to increased cuticular penetration. Monoterpenoids, such as carvacrol, eugenol and thymol, are neurologically active and inhibit the nerve firing activity of C. lectularius. However, the effects of mixtures of these monoterpenoids on their toxicity and neuroinhibitory potential against C. lectularius are not known. In this study, the toxicity levels of a tertiary mixture of carvacrol, eugenol and thymol (1:1:1 ratio) and a binary mixture of synthetic insecticides, bifenthrin and imidacloprid (1:1 ratio) were evaluated against C. lectularius through topical bioassays and electrophysiology experiments. Both a mixture of monoterpenoids and the mixture of synthetic insecticides exhibited synergistic effects in topical bioassays. In electrophysiology experiments, the monoterpenoid mixture led to greater neuroinhibitory effects, whereas a mixture of synthetic insecticides caused higher neuroexcitatory effects in comparison to single compounds. This study shows evidence for neurological mechanisms of synergistic interactions between monoterpenoids and provides information regarding the utilization of natural compound mixtures for C. lectularius management.


Sign in / Sign up

Export Citation Format

Share Document