Utility of in situ sodium alginate/karaya gum gels to facilitate gastric retention in rodents

2012 ◽  
Vol 434 (1-2) ◽  
pp. 406-412 ◽  
Author(s):  
Kimberly A. Foster ◽  
Mike Morgen ◽  
Brice Murri ◽  
Ian Yates ◽  
R. Marcus Fancher ◽  
...  
INDIAN DRUGS ◽  
2016 ◽  
Vol 53 (01) ◽  
pp. 25-31
Author(s):  
M Priyanka ◽  
◽  
F. S. Dasankoppa ◽  
H. N Sholapur ◽  
NGN Swamy ◽  
...  

The poor bioavailability and the therapeutic effectiveness exhibited by the anti-depressant venlafaxine hydrochloride on oral administration is overcome by the use of ion-activated gel forming systems that are instilled as drops; these undergo gelation in the nasal cavity. The present study describes the design, characterization and evaluation of mucoadhesive nasal in situ gelling drug delivery of venlafaxine hydrochloride using different polymers like sodium alginate, HPMC and pectin in various concentrations. DSC studies revealed compatibility of the drug and excipients used. The in situ gels were characterized for physicochemical parameters, gelling ability, rheological studies, drug content, drug entrapment efficiency, in vitro mucoadhesive strength, water holding capacity, gel expansion coefficient and in vitro drug release studies. The amount of polymer blends was optimized using 23 full factorial design. The influence of experimental factors on percentage cumulative drug release at the end of 2 and 8 hours were investigated to get optimized formulation. The responses were analyzed using ANOVA and polynomial equation was generated for each response using multiple linear regression analysis. Optimized formulation, F9, containing 1.98% w/V sodium alginate, 0.64% w/V hydroxylpropyl methylcellulose, 0.99% w/V pectin showed percentage cumulative drug release of 19.33 and 80.44 at the end of 2 and 8 hours, respectively, which were close to the predicted values. The optimized formulation was subjected to stability study for three months at 300C /75% RH. The stability study revealed no significant change in pH, drug content and viscosity. Thus, venlafaxine hydrochloride nasal mucoadhesive in situ gel could be successfully formulated to improve bioavailability and to target the brain.


Author(s):  
Sanket Kumar ◽  
Mahesh Singh ◽  
Babulal Patel

Peptic ulcer, it is the most common type of stomach disease, according to the American Gastroenterology Association. “We know that ulcers occur because there has been a disruption in the balance of factors that injure the digestive tract and those factors that protect it from injury,” The present investigation deal with the formulation, optimization and evaluation of sodium alginate based in situ gel of ranitidine hydrochloride (R-HCl) in ulcer treatment. The in-situ formulation are homogenous liquid when administration orally and become gel at the contact site. The evaluation of the formulation is dependent upon accurate results obtained by analytical method used during the study. Accurate results require the use of standard and a calibration procedure. Hence, standard plots of Ranitidine hydrochloride were prepared in (0.1N HCL, pH 1.2) solutions. Two, sodium alginate and calcium carbonate used as a polymer and cross-linking agent respectively in the formulation of in-situ gel. From the IR studies it may be concluded that the drug and carriers used undergo physical interaction there is no chemical change, and thus the gelling agent, cross-linking agent and other excipient is suitable for formulation of in-situ gel of ranitidine hydrochloride. Indicate that the formulation, DKF9 which was prepared by the Sodium alginate (2 gm) with Ranitidine Hydrochloride showed minimum drug release (sustained drug release) after 8 hrs. It can be concluded that the In-situ gel was beneficial for delivering the drug which needs sustained release to achieve the slow action. Keywords: In-situ gel, Peptic Ulcer, Ranitidine Hydrochloride (R-HCl), Sodium alginate.


Author(s):  
GIRISH KONDALKAR ◽  
ASISH DEV

Objective: The objective of this study was to develop an in situ ophthalmic gel of an anti-infective drug, moxifloxacin (MOX) hydrochloride (HCL), for sustained ocular delivery for the treatment of bacterial infections of the eye. Method: In the present work the in situ gelling systems were prepared by ion exchange method with the help of various concentrations of gelling agent gelrite (0.08 g, 0.1 g and 0.12 g) and sodium alginate (0.6 g, 0.8 g and 1 g) as viscosity enhancer were added in the formulation; 9 formulations were prepared according to 32 factorial designs and evaluated. The responses were analyzed for the analysis of variance using Design-Expert version 10 software. Statistical models were generated for each response parameter. Results: Optimized formulation batch F7 (0.12% gelrite and 0.6% sodium alginate) was liquid before addition of simulated tear fluid (STF) and underwent rapid gelation on addition of STF and had given 84.05% cumulative drug release; the formulation was found to be clear, having good in situ gelling capacity, good antibacterial efficacy, having drug content 99.75%; optimized formulation was sterile and showed sustained drug release over 8 h period as compared to marketed eye drop. Conclusions: From the above results, we can concluded that 32 full factorial design and statistical models can be successfully used to optimize the formulations, and it was concluded that the trial batch F7 (0.12% gelrite and 0.6% sodium alginate) is the best formula (percentage cumulative drug release over 84.05%) and it is possible to formulate in situ ophthalmic gels of MOX HCL using gelrite in combination with sodium alginate for the treatment of various bacterial infections of the eyes.


2020 ◽  
pp. 096739112090447
Author(s):  
O Sreekanth Reddy ◽  
MCS Subha ◽  
T Jithendra ◽  
C Madhavi ◽  
K Chowdoji Rao

This article reports the fabrication of pH-sensitive microbeads from sodium alginate (SA) and modified karaya gum (KG). KG was modified by graft copolymerization using 2-hydroxyethyl methacrylate (2-HEMA) through in situ free radical polymerization reaction. The graft copolymer was blended with SA to develop microbeads by a simple ionotropic gelation technique. The microbeads were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, differential scanning calorimetry, thermogravimetric analysis, and scanning electron microscopy. The effect of %HEMA and polymer blend ratio on the swelling capacity was investigated. Drug release kinetics of the microbeads was investigated under both pH 7.4 and pH 1.2 at 37°C. The drug release kinetics was analyzed by evaluating the release data using different kinetic models.


2019 ◽  
Vol 30 (12) ◽  
pp. 995-1007 ◽  
Author(s):  
Yufan Zhang ◽  
Xian Li ◽  
Nan Zhong ◽  
Yuanlin Huang ◽  
Kewen He ◽  
...  

2013 ◽  
Vol 361-363 ◽  
pp. 339-342 ◽  
Author(s):  
Juan Juan Fei ◽  
Qiang Li ◽  
Yuan Yuan Feng ◽  
Geng Sheng Ji ◽  
Xu Ding Gu ◽  
...  

The work is to select biocompatible ionic liquid (IL) toward in situ saccharification of cellulose and investigating the effect of enzymatic saccharification with sodium alginate immobilized cellulase. The [Mmi [DM was selected for the ionic liquid treatment improved the yield of reducing sugars and the hydrolyzates could be efficiently fermented to ethanol. The yield of reducing sugar is 89.54% for 48h. In the in situ saccharification process, the yield of sugars were 84.52% and 86.72% with immobilized cellulase and free cellulase saccharification for 48h. Then the hydrolyzates could be fermented to ethanol withCandida shehatae. The yield of ethanol was 0.42g/g glucose within 24h.


2014 ◽  
Vol 2 (39) ◽  
pp. 16516-16522 ◽  
Author(s):  
Huabo Huang ◽  
Xiaoping Zeng ◽  
Wan Li ◽  
Hong Wang ◽  
Qin Wang ◽  
...  

Reinforcement of PANI–SA conducting hydrogels is attributed to the interaction of PANI–SA chains and the inter/intramolecular hydrogen bonding within the SA chains.


Sign in / Sign up

Export Citation Format

Share Document