Cyclodextrin-based metal-organic frameworks particles as efficient carriers for lansoprazole: Study of morphology and chemical composition of individual particles

2017 ◽  
Vol 531 (2) ◽  
pp. 424-432 ◽  
Author(s):  
Xue Li ◽  
Tao Guo ◽  
Laurent Lachmanski ◽  
Francesco Manoli ◽  
Mario Menendez-Miranda ◽  
...  
2021 ◽  
Vol 7 (2) ◽  
pp. 47
Author(s):  
Flávio Figueira ◽  
Filipe A. Almeida Paz

Metal–organic frameworks (MOFs) are crystalline materials with permanent porosity, composed of metal nodes and organic linkers whose well-ordered arrangement enables them to act as ideal templates to produce materials with a uniform distribution of heteroatom and metal elements. The hybrid nature of MOFs, well-defined pore structure, large surface area and tunable chemical composition of their precursors, led to the preparation of various MOF-derived porous carbons with controlled structures and compositions bearing some of the unique structural properties of the parent networks. In this regard, an important class of MOFs constructed with porphyrin ligands were described, playing significant roles in the metal distribution within the porous carbon material. The most striking early achievements using porphyrin-based MOF porous carbons are here summarized, including preparation methods and their transformation into materials for electrochemical reactions.


Author(s):  
Xia Hu ◽  
Qi Liu ◽  
Kui Lin ◽  
Cuipang Han ◽  
Baohua Li

Metal−organic frameworks (MOFs) have been attracting a great attention for application in electrolytes. Benefiting from the controllable chemical composition, tunable pore structure and surface functionality, MOFs offer great opportunities for...


2016 ◽  
Vol 52 (55) ◽  
pp. 8501-8513 ◽  
Author(s):  
Na Li ◽  
Jian Xu ◽  
Rui Feng ◽  
Tong-Liang Hu ◽  
Xian-He Bu

Stability of MOFs is a crucial issue for their practical applications, which might be improved by varying their chemical composition and/or structurally tuning them. Several strategies for enhancing the stability of MOFs were provided.


2021 ◽  
Author(s):  
Jae Hwa Lee ◽  
Min Hyuk Kim ◽  
Hoi Ri Moon

Increasing the complexity of nanomaterials in terms of their structure and chemical composition has attracted significant attention, because it can yield unique scientific outcomes and considerable improvements for practical applications....


Science ◽  
2013 ◽  
Vol 341 (6149) ◽  
pp. 1230444 ◽  
Author(s):  
Hiroyasu Furukawa ◽  
Kyle E. Cordova ◽  
Michael O’Keeffe ◽  
Omar M. Yaghi

Crystalline metal-organic frameworks (MOFs) are formed by reticular synthesis, which creates strong bonds between inorganic and organic units. Careful selection of MOF constituents can yield crystals of ultrahigh porosity and high thermal and chemical stability. These characteristics allow the interior of MOFs to be chemically altered for use in gas separation, gas storage, and catalysis, among other applications. The precision commonly exercised in their chemical modification and the ability to expand their metrics without changing the underlying topology have not been achieved with other solids. MOFs whose chemical composition and shape of building units can be multiply varied within a particular structure already exist and may lead to materials that offer a synergistic combination of properties.


2021 ◽  
Author(s):  
Lars Öhrström ◽  
Francoise M. Amombo Noa

2020 ◽  
Vol 7 (1) ◽  
pp. 221-231
Author(s):  
Seong Won Hong ◽  
Ju Won Paik ◽  
Dongju Seo ◽  
Jae-Min Oh ◽  
Young Kyu Jeong ◽  
...  

We successfully demonstrate that the chemical bath deposition (CBD) method is a versatile method for synthesizing phase-pure and uniform MOFs by controlling their nucleation stages and pore structures.


Sign in / Sign up

Export Citation Format

Share Document