A local viewpoint for evaluating the influence of stress triaxiality and Lode angle on ductile failure and hardening

2010 ◽  
Vol 26 (3) ◽  
pp. 348-371 ◽  
Author(s):  
G. Mirone ◽  
D. Corallo
2021 ◽  
Author(s):  
N. Baghous ◽  
I. Barsoum

Abstract The objective of this study is to investigate the effect of the Lode parameter on different material strengths. Recent work has shown that ductile failure highly depends on the stress state characterized by both the stress triaxiality T and the Lode parameter L, which is related to the third deviatoric stress invariant. Thus, for six different steel grades, two different specimen geometries were manufactured to account for two different Lode parameters (L = −1 and L = 0), whereas T is controlled by introducing different sized notches at the center of the specimens. By performing tensile experiments and running finite element simulations, the ductile failure loci of the six materials showed variations between the two specimen geometries, indicating that the failure highly depends on the stress state characterized by both T and L. This indicates the need to reassess the ductile local failure criterion in the ASME codes that only accounts for T as a stress state measure. A Lode sensitivity parameter LS is defined based on the experimental results and revealed that the steel grades with ultimate strength higher than a certain threshold value (450 MPa) exhibit sensitivity to the Lode parameter, and the results showed that the LS increases with increase in the ultimate strength of the steel grade. The results were incorporated to enhance the original ASME local failure criterion by accounting for T, L, and LS to accurately assess ductile failure in high-strength steels.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1627
Author(s):  
Jian Peng ◽  
Peishuang Zhou ◽  
Ying Wang ◽  
Qiao Dai ◽  
David Knowles ◽  
...  

The stress state has an important effect on the deformation and failure of metals. While the stress states of the axisymmetric notched bars specimens are studied in the literature, the studies on the flat metal specimen with inclined notch are very limited and the stress state is not clearly characterized in them. In this paper, digital image correlation and finite element simulations are used to study the distribution of strain and stress state, that is stress triaxiality and Lode angle parameter. Flat specimen with inclined notch was tested to extract the full field strain evolution and calculate stress state parameters at three locations: specimen centre, notch root and failure starting point. It is found that compared with the centre point and the notch root, the failure initiation point can better characterize the influence of the notch angle on the strain evolution. Conversely, the centre point can more clearly characterize the effect of the notch angle on stress state, since the stress states at the failure point and the notch root change greatly during the plastic deformation. Then the calculated stress state parameters of the flat metal specimen with inclined notch at the centre point are used in Wierzbicki stress state diagram to establish a relationship between failure mode and stress state.


Author(s):  
M. A. Al Khaled ◽  
I. Barsoum

Pressure vessels designed in accordance with the ASME BPVC code are protected against local ductile failure. Recent work has shown that local ductile failure highly depends on the stress state characterized by both stress triaxiality (T) and the Lode parameter (L). In this paper, the effect of stress state on the ductility of a tubular steel is studied. Two ring specimen configurations were optimized to allow the determination of the ductile failure locus of both tensile and plane strain loadings. The geometry of both ring specimen configurations was optimized to achieve a plane strain (L = 0) condition and a generalized tension (L = −1) condition. Notches with different radii were machined on both types to achieve a wide range of stress triaxiality. Specimens were manufactured from SA-106 carbon tubular steel and were tested to determine the ductile failure loci as a function of T and L. Failure locus of SA-106 steel was constructed based on the failure instants and was found to be independent of the variation in the Lode parameter. The ASME-BPVC local failure criterion showed close agreement with experimental results.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
M. A. Al-Khaled ◽  
I. Barsoum

Pressure vessels designed in accordance with the ASME BPVC code are protected against local ductile failure. Recent work has shown that local ductile failure highly depends on the stress state characterized by both stress triaxiality (T) and the Lode parameter (L). In this paper, the effect of stress state on the ductility of a tubular steel is studied. Two ring specimen configurations were optimized to allow the determination of the ductile failure locus at both tensile and plane strain loadings. The geometry of both ring specimen configurations was optimized to achieve a plane strain (L=0) condition and a generalized tension (L=-1) condition. Notches with different radii were machined on both types to achieve a wide range of stress triaxiality. Specimens were manufactured from SA-106 carbon tubular steel and were tested to determine the ductile failure loci as a function of T and L. Failure locus of SA-106 steel was constructed based on the failure instants and was found to be independent of the Lode parameter. The ASME-BPVC local failure criterion showed close agreement with experimental results (EXP).


Author(s):  
Chang-Kyun Oh ◽  
Yun-Jae Kim ◽  
Jong-Hyun Baek ◽  
Young-Pyo Kim ◽  
Woo-Sik Kim

A local failure criterion for the API X65 steel is applied to predict ductile failure of full-scale API X65 pipes with simulated corrosion and gouge defects under internal pressure. The local failure criterion is the stress-modified fracture strain for the API X65 steel as a function of the stress triaxiality (defined by the ratio of the hydrostatic stress to the effective stress). Based on detailed FE analyses with the proposed local failure criteria, burst pressures of defective pipes are estimated and compared with experimental data. The Failure of corroded pipes is governed by local necking and plastic collapse in the defective region, rather than failure. For pipes with gouge defects, on the other hand, it is found that fracture is dominant. The predicted burst pressures are in good agreement with experimental data. Noting that an assessment equation against the gouge defect is not yet available, parametric study is performed, from which a simple equation is proposed to predict burst pressure for API X65 pipes with gouge defects.


2020 ◽  
pp. 105678952095804
Author(s):  
Kai Zhang ◽  
Houssem Badreddine ◽  
Naila Hfaiedh ◽  
Khemais Saanouni ◽  
Jianlin Liu

This paper deals with the prediction of ductile damage based on CDM approach fully coupled with advanced elastoplastic constitutive equations. This fully coupled damage model is developed based on the total energy equivalence assumption under the thermodynamics of irreversible processes framework with state variables. In this model, the damage evolution is enhanced by accounting for both stress triaxiality and Lode angle. The proposed constitutive equations are implemented into Finite Element (FE) code ABAQUS/Explicit through a user material subroutine (VUMAT). The material parameters are determined by the hybrid experimental-numerical method using various tensile and shear tests. Validation of the proposed model has been done using different tests of two aluminum alloys (Al6061-T6 and Al6014-T4). Through comparisons of numerical simulations with experimental results for different loading paths, the predictive capabilities of the proposed model have been shown. The model is found to be able to capture the initiation as well as propagation of macro-crack in sheet and bulk metals during their forming processes.


Sign in / Sign up

Export Citation Format

Share Document