Impact of design and thermal inertia on the energy saving potential of capacity controlled heat pump heating systems

2008 ◽  
Vol 31 (6) ◽  
pp. 1094-1103 ◽  
Author(s):  
Fredrik Karlsson ◽  
Per Fahlén
Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1321
Author(s):  
Yu-Jin Hwang ◽  
Jae-Weon Jeong

The objective of this research is to establish an appropriate operating strategy for a radiant floor heating system that additionally has an air source heat pump for providing convective air heating separately, leading to heating energy saving and thermal comfort in residential buildings. To determine the appropriate optimal operating ratio of each system taking charge of combined heating systems, the energy consumption of the entire system was drawn, and the adaptive floor surface temperature was reviewed based on international standards and literature on thermal comfort. For processing heating loads with radiant floor heating and air source heating systems, the heating capacity of radiant floor heating by 1 °C variation in floor temperature was calculated, and the remaining heating load was handled by the heating capacity of the convective air heating heat pump. Consequently, when the floor temperature was 25 °C, all heating loads were removed by radiant floor heating only. When handling all heating loads with the heat pump, 59.2% less energy was used compared with radiant floor heating only. Considering the local discomfort of the soles of the feet, the floor temperature is expected to be suitable at 22–23 °C, and 31.5–37.6% energy saving compared with those of radiant floor heating alone were confirmed.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4313 ◽  
Author(s):  
Boahen ◽  
Choi

The use of cascade heat pumps for hot water generation has gained much attention in recent times. The big question that has attracted much research interest is how to enhance the performance and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX) in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle with AHX in desuperheater position was found to have better performance than that with AHX at heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to 7.4% and 14.9% respectively.


2017 ◽  
Vol 25 (04) ◽  
pp. 1750030 ◽  
Author(s):  
Min-Hwi Kim ◽  
Dong-Won Lee ◽  
Rin Yun ◽  
Jaehyeok Heo

Massive thermal effluent energy from power plant is mostly released to the sea, and only a little is used for fishing culture and agriculture in South Korea. The thermal effluent from the power plant can be an efficient heat source of the heat pump system to provide heating energy for the greenhouse, but energy loss and pump power by long distance pipeline installation from a power plant to the greenhouse should be considered. In this paper, an operational energy saving potential of a thermal effluent source heat pump system for the greenhouse heating was investigated. For the estimation of thermal load, three cases of greenhouse were categorized, and the thermal performance and operating energy consumption during the heating season were compared with those of a conventional ground source heat pump (GSHP) system. The model for heat pump system was newly derived to estimate the energy performance of the proposed system, and then detailed simulations for each system under three cases of greenhouse were conducted. The results showed that the operational energy of the proposed system can be saved by 17–20% than that of the conventional GSHP system.


2020 ◽  
Vol 36 (5) ◽  
pp. 619-628
Author(s):  
Wanying Zhao ◽  
Meizhi Wang ◽  
Hao Li ◽  
Guoming Li ◽  
Zhengxiang Shi

HighlightsAn old nursery pig building was retrofitted to potentially improve envelope insulation capacity.A mathematical theory based on coal consumption was established to evaluate energy efficiency of insulation renovation for a nursery pig building.The heat loss of the nursery pig house with 90-mm-thick extruded polystyrene boards was 60% lower than that without the materials.Ground source heat pump and air source heat pump are economical and environmental-friendly heating systems.Abstract. Appropriate renovation of old buildings is critical for energy-efficient pig production. Currently, energy consumption, especially coal consumption, keeps on rising in the production. Therefore, it is essential to develop energy-saving renovation methods for old nursery pig buildings and use cleaner heating energies. A mathematical theory based on coal consumption was established to evaluate energy efficiency of insulation renovation. Two nursery pig houses were tested in this experiment. One was the retrofitted house with the 90-mm-thick extruded polystyrene boards embedded onto outer walls, and the other one was served as a control house without those insulation materials. The results show that the air temperature and inside surface temperature of the retrofitted house were significantly higher than those of the control house in winter. Therefore, though adding insulation layers to walls, the envelope insulation capacity was improved. Meanwhile, the heat loss of the retrofitted house was 60% lower than that of the control house (11.08 W m-2 vs. 27.93 W m-2), when the theoretical ventilation rate was 1560 m3 h-1. In addition, with the prohibition of the coal usage in forseeable future of China, the ground source heat pump and air source heat pump can be economical solutions for heating systems with clean and renewable energy. Keywords: Air source heat pump, Extruded polystyrene board, Ground source heat pump, Heating, Thermal insulation.


2012 ◽  
Vol 48 ◽  
pp. 317-324 ◽  
Author(s):  
Xianting Li ◽  
Wei Wu ◽  
Xiaoling Zhang ◽  
Wenxing Shi ◽  
Baolong Wang

2016 ◽  
Vol 26 (9) ◽  
pp. 1292-1304 ◽  
Author(s):  
Min Zhao ◽  
Weibin Kang ◽  
Xilian Luo ◽  
Chuck Wah Yu ◽  
X. Z. Meng ◽  
...  

The radiant heating system assisted by an air source heat pump has been widely applied in China for its effective energy conservation, high comfort performance and flexible utilization. Because the coefficient of performance of the system is strictly controlled by the supply water temperature heated by the air source heat pump, an efficient radiant terminal with low-temperature supply water is of significance to the coefficient of performance. In this research, the energy-saving feature of the capillary mat radiant heating system was first proved theoretically based on the influence of the heat transfer temperature difference on the coefficient of performance of the air source heat pump. In order to compare the performances of the capillary mat radiant and floor radiant heating systems, an experiment platform of two different radiant terminals assisted by an air source heat pump was established in a residential building in Xi’an, China. Experimental results showed that, to satisfy the indoor heating requirements, the supply and return water temperatures ought to be 35.0℃ and 30.9℃, respectively, and for the capillary mat radiant heating system, 43.9℃ and 38.8℃, respectively, for the floor radiant heating system. However, the electricity consumption of the capillary mat radiant heating system is 45% less than that of the floor radiant heating system. Thus, our study validated the energy-saving potential of the capillary mat radiant heating system assisted by an air source heat pump.


2011 ◽  
Vol 217-218 ◽  
pp. 202-205
Author(s):  
Zhi Wei Wang ◽  
Lei Shi ◽  
Peng Li ◽  
Wei Cao

For an actual project of groundwater source heat pump air conditioning system in Yangli region, by the field investigation on energy usage status of the system operation, analyzes the causes of non-energy-saving operation such as water pumps energy consumption too much, presents an intelligent control strategy of the system energy saving operation for solving the problem, performs the program design of energy saving control based on Programmable Logic Controller (PLC) and variable frequency technique, finally predicts the system energy saving potential.


Sign in / Sign up

Export Citation Format

Share Document