Finite element model for beef chilling using CFD-generated heat transfer coefficients

2009 ◽  
Vol 32 (1) ◽  
pp. 102-113 ◽  
Author(s):  
Q.T. Pham ◽  
F.J. Trujillo ◽  
N. McPhail
Author(s):  
Amir Khalilollahi ◽  
Russell L. Warley ◽  
Oladipo Onipede

Boards made of composites are susceptible of structural failure or irreversible damage under thermally raised stresses. A thermal/structural finite element model is integrated in this study to enable the predictions of the temperature and stress distribution of vertically clamped parallel circuit boards that include series of symmetrically mounted heated electronic modules (chips). The board is modeled as a thin plate containing four heated flush rectangular areas that represent the electronic modules. The finite element model should be to able to accept the convection heat transfer on the board surface, heat generation in the modules, and directional conduction inside the board. A detailed 3-D CFD model is incorporated to predict the conjugate heat transfer coefficients that strongly affect the temperature distribution in the board and modules. Structural analyses are performed by a FE model that uses the heat transfer coefficients mentioned above, and structural elements capable of handling orthotropic material properties. The stress fields are obtained and studied for the models possessing two and there laminates with different fiber orientations, and inter-fiber angles. Appreciable differences in values of max stress intensity were observed as the fiber orientation and inter-fiber angle changed. The angular parameters in this study were guided by experimental design (DOE) concepts leading to a metamodel of the stress intensity in the board. The optimum design variables found by the equations of the metamodel.


Author(s):  
Amir Khalilollahi ◽  
Russell L. Warley

Composite printed electronic boards are susceptible of structural failure or irreversible damage under thermally raised stresses. A thermal/structural finite element model is integrated in this study to enable the predictions of the temperature and stress distribution of vertically clamped parallel circuit boards that include series of symmetrically mounted heated electronic modules (chips). The board is modeled as a thin plate containing four heated flush rectangular areas that represent the electronic modules. The finite element model should be to able to accept the convection heat transfer on the board surface, heat generation in the modules, and directional conduction inside the board. A detailed 3-D CFD model is incorporated to predict the conjugate heat transfer coefficients that strongly affect the temperature distribution in the board and modules. Structural analyses are performed by a FE model that uses the heat transfer coefficients mentioned above, and structural elements capable of handling orthotropic material properties. The stress fields are obtained and compared for the models possessing different fiber orientations and fiber volume fractions. Appreciable differences in stress and thermal gradient fields were observed. The values of fiber volume fraction and fiber orientation at which to conduct analyses was guided by experimental design (DOE) ideas leading to a metamodel of the stress intensity and temperature gradient in the board which was used to represent the complied results of this study.


2014 ◽  
Vol 1063 ◽  
pp. 334-338 ◽  
Author(s):  
Tzu Hao Hung ◽  
Heng Kuang Tsai ◽  
Fuh Kuo Chen ◽  
Ping Kun Lee

Due to the complexity of hot stamping mechanism, including the coupling of material formability, thermal interaction and metallurgical microstructure, it makes the process design more difficult even with the aid of the finite element analysis. In the present study, the experimental platforms were developed to measure and derive the friction and heat transfer coefficients, respectively. The experiments at various elevated temperatures and contact pressures were conducted and the friction coefficients and heat transfer coefficients were obtained. A finite element model was also established with the experimental data and the material properties of the boron steel calculated from the JMatPro software. The finite element simulations for the hot stamping forming of an automotive door beam, including transportation analysis, hot forming analysis and die quenching analysis were then performed to examine the forming properties of the door beam. The validation of the finite element results by the production part confirms the efficiency and accuracy of the developed experimental platforms and the finite element analysis for the process design of hot stamping.


2020 ◽  
Vol 26 (9) ◽  
pp. 1627-1635
Author(s):  
Dongqing Yang ◽  
Jun Xiong ◽  
Rong Li

Purpose This paper aims to fabricate inclined thin-walled components using positional wire and arc additive manufacturing (WAAM) and investigate the heat transfer characteristics of inclined thin-walled parts via finite element analysis method. Design/methodology/approach An inclined thin-walled part is fabricated in gas metal arc (GMA)-based additive manufacturing using a positional deposition approach in which the torch is set to be inclined with respect to the substrate surface. A three-dimensional finite element model is established to simulate the thermal process of the inclined component based on a general Goldak double ellipsoidal heat source and a combined heat dissipation model. Verification tests are performed based on thermal cycles of locations on the substrate and the molten pool size. Findings The simulated results are in agreement with experimental tests. It is shown that the dwell time between two adjacent layers greatly influences the number of the re-melting layers. The temperature distribution on both sides of the substrate is asymmetric, and the temperature peaks and temperature gradients of points in the same distance from the first deposition layer are different. Along the deposition path, the temperature distribution of the previous layer has a significant influence on the heat dissipation condition of the next layer. Originality/value The established finite element model is helpful to simulate and understand the heat transfer process of geometrical thin-walled components in WAAM.


2015 ◽  
Vol 764-765 ◽  
pp. 369-373
Author(s):  
Wei Hsin Gau ◽  
Kun Nan Chen ◽  
Chin Yuan Hung

The brakes of an automobile are among the most critical components regarding the safety features, and disc brakes are the most common type used in passenger vehicles. In this research, the squeal phenomena of a swirl-vent brake rotor and the thermal analysis of two straight-vent brake rotors, made of cast-iron and aluminum-alloy, are investigated. For the squeal analysis, finite element models are created and analyzed using a prestressed modal analysis with complex eigen-solutions. For the thermal analysis, heat transfer coefficients on the surfaces of a rotor as functions of time are first estimated by CFD simulation, and then imported to a thermal analysis program as the boundary condition. Finally, the temperature distribution of the rotor can be calculated by finite element analysis. The simulation results show that vortices will arise in the vented passages of straight-vent rotors, which means less heat carried away and lower heat transfer coefficients. The swirl-vent brake design is clearly better for thermal ventilation. Furthermore, under the same condition, aluminum-alloy rotors exhibit more uniform temperature distributions with smaller temperature gradients than cast-iron rotors do.


2011 ◽  
Vol 492 ◽  
pp. 328-332 ◽  
Author(s):  
Zhi Ming Han ◽  
Yi Wang Bao ◽  
Wei Dong Wu ◽  
Zheng Quan Liu ◽  
Xiao Gen Liu ◽  
...  

Simulation analysis of thermal performance for vacuum glazing was conducted in this paper. The heat conduction through the support pillars and edge seal and the radiation between two glass sheets were considered. The heat conductance of residual gas in vacuum gap was ignored for a low pressure of less than 0.1Pa. Two pieces of vacuum glazing with sizes of 0.3 × 0.3 m and 1.0 × 1.0 m were simulated. In order to check the accuracy of simulations with specified mesh number, the thermal performance of a small central area (4mm×4mm) with a single pillar in the center was simulated using a graded mesh of 41×41×5 nodes. The heat transfer coefficients of this unit obtained from simulation and analytic prediction were 2.194Wm-2K-1and 2.257Wm-2K-1respectively, with a deviation of 2.79%. The three dimensional (3D) isotherms and two dimensional (2D) isotherms on the cold and hot surfaces of the specimens were also presented. For a validity of simulated results, a guarded hot box calorimeter was used to determine the experimental thermal performance of 1.0m×1.0m vacuum glazing. The overall heat transfer coefficients obtained from experiment and simulation were 2.55Wm-2K-1 and 2.47Wm-2K-1respectively, with a deviation of 3.14%.


Sign in / Sign up

Export Citation Format

Share Document