Thermo-economic analysis of a novel regasification system with liquefied-natural-gas cold-energy

2019 ◽  
Vol 101 ◽  
pp. 218-229
Author(s):  
Lee Yoon-Ho
Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Sanghyun Che ◽  
Juwon Kim ◽  
Daejun Chang

Liquid air can be employed as a carrier of cold energy obtained from liquefied natural gas (LNG) and surplus electricity. This study evaluates the potential of liquid air as a distributed source with a supply chain for a cold storage system using liquid air. Energy storing and distributing processes are conceptually designed and evaluated considering both the thermodynamic and economic aspects. Further, the proposed supply chain is compared with a conventional NH3/CO2 cascade refrigeration system. The thermodynamic analysis demonstrates that the exergy efficiency and the coefficient of performance of the proposed supply chain are 22% and 0.56, respectively. Economic analysis is based on a life cycle cost (LCC) evaluation. From the economic analysis, the liquid air production cost and the LCC of a liquid air cold storage system (LACS) are estimated to be 40.4 USD/ton and 34.2 MMUSD, respectively. The LCC is reduced by 19% in the LACS compared with the conventional refrigeration system. The proposed supply chain is economically feasible, although its thermodynamic performances are lower than those of the conventional system. The sensitivity analysis indicates that LNG mass flow rate in the air liquefaction system and the cold storage operating time are dominant parameters affecting the economic performance.


2000 ◽  
Vol 29 (4) ◽  
pp. 249-268 ◽  
Author(s):  
Yoshiyuki Takeuchi ◽  
Shogo Hironaka ◽  
Yutaka Shimada ◽  
Kenji Tokumasa

2012 ◽  
Vol 433-440 ◽  
pp. 215-220 ◽  
Author(s):  
Hong Jun Yang ◽  
Shuan Shi Fan ◽  
Xue Mei Lang ◽  
Yan Hong Wang

A process of hydrogen storage in the form of hydrate by utilization of liquefied natural gas(LNG) cold energy was proposed. Hydrogen was recovered from exhaust gas by pressure swing adsorption method, and formed gas hydrate with ice powder under a pressure of 35 MPa and a temperature of 140 K. The process analysis was carried out with partially numerical simulation by Aspen Plus and theoretical calculation. The results show that the energy consumption of hydrogen stored in the hydrate form is 12058 kJ/(kg.H2) and of this hydrogen storage process, the ratio of spent energy to stored energy is 0.10 , which is superior to the most of the other method. The research indicated that if there is cold energy with low temperature available, hydrogen stored in the hydrate form is a method of feasible and energy-efficient.


2019 ◽  
Vol 209 ◽  
pp. 550-571 ◽  
Author(s):  
Towhid Parikhani ◽  
Towhid Gholizadeh ◽  
Hadi Ghaebi ◽  
Seyed Mohammad Sattari Sadat ◽  
Mehrdad Sarabi

Author(s):  
L N Guo ◽  
B L An ◽  
L B Chen ◽  
J X Chen ◽  
J J Wang ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4475 ◽  
Author(s):  
Mohd Amin Abd Majid ◽  
Hamdan Haji Ya ◽  
Othman Mamat ◽  
Shuhaimi Mahadzir

In order to cater for increased demand for natural gas (NG) by the industry, Malaysia is required to import liquid natural gas (LNG). This is done through PETRONAS GAS Sdn Bhd. For LNG regasification, two regasification terminals have been set up, one in Sungai Udang Melaka (RGTSU) and another at Pengerang Johor (RGTPJ). RGTSU started operation in 2013 while RGTPJ began operation in 2017. The capacities of RGTSU and RGTPJ are 3.8 (500 mmscfd) and 3.5 (490 mmscfd) MTPA, respectively. RGTSU is an offshore plant and uses an intermediate-fluid-vaporization (IFV) process for regasification. RGTPJ is an onshore plant and employs open-rack vaporization (ORV). It is known that a substantial amount of cold energy is released during the regasification process. However, neither plant captures the cold energy released during regasification. This techno economic study serves to evaluate the technical and economic feasibility of the cold energy available during regasification. It was estimated that approximately 47,214 and 88,383 kWh of cold energy could be generated daily at RGTPJ and RGTSU, respectively, during regasification processes. Converting this energy into RTh at 70% thermal efficiency, and taking the commercial rate of 0.549 Sen per RTh, for the 20-year project life, an internal rate of return (IRR) of up to 33% and 17% was estimated for RGTPJ and for RGTSU, respectively.


Sign in / Sign up

Export Citation Format

Share Document