Towards automatic discontinuity trace extraction from rock mass point cloud without triangulation

Author(s):  
Jiateng Guo ◽  
Lixin Wu ◽  
Minmin Zhang ◽  
Shanjun Liu ◽  
Xiaoyu Sun
Keyword(s):  
Sensors ◽  
2020 ◽  
Vol 20 (15) ◽  
pp. 4209
Author(s):  
Dongbo Yu ◽  
Jun Xiao ◽  
Ying Wang

In respect of rock-mass engineering, the detection of planar structures from the rock-mass point clouds plays a crucial role in the construction of a lightweight numerical model, while the establishment of high-quality models relies on the accurate results of surface analysis. However, the existing techniques are barely capable to segment the rock mass thoroughly, which is attributed to the cluttered and unpredictable surface structures of the rock mass. This paper proposes a high-precision plane detection approach for 3D rock-mass point clouds, which is effective in dealing with the complex surface structures, thus achieving a high level of detail in detection. Firstly, the input point cloud is fast segmented to voxels using spatial grids, while the local coplanarity test and the edge information calculation are performed to extract the major segments of planes. Secondly, to preserve as much detail as possible, supervoxel segmentation instead of traditional region growing is conducted to deal with scattered points. Finally, a patch-based region growing strategy applicable to rock mass is developed, while the completed planes are obtained by merging supervoxel patches. In this paper, an artificial icosahedron point cloud and four rock-mass point clouds are applied to validate the performance of the proposed method. As indicated by the experimental results, the proposed method can make high-precision plane detection achievable for rock-mass point clouds while ensuring high recall rate. Furthermore, the results of both qualitative and quantitative analyses evidence the superior performance of our algorithm.


Author(s):  
Jiateng Guo ◽  
Yinhe Liu ◽  
Lixin Wu ◽  
Shanjun Liu ◽  
Tianhong Yang ◽  
...  

2019 ◽  
Vol 11 (6) ◽  
pp. 635 ◽  
Author(s):  
Lupeng Liu ◽  
Jun Xiao ◽  
Ying Wang

In the fields of 3D modeling, analysis of discontinuities and engineering calculation, surface extraction is of great importance. The rapid development of photogrammetry and Light Detection and Ranging (LiDAR) technology facilitates the study of surface extraction. Automatic extraction of rock surfaces from 3D rock-mass point clouds also becomes the basis of 3D modeling and engineering calculation of rock mass. This paper presents an automated and effective method for extracting rock surfaces from unorganized rock-mass point clouds. This method consists of three stages: (i) clustering based on voxels; (ii) estimating major orientations based on Gaussian Kernel and (iii) rock surface extraction. Firstly, the two-level spatial grid is used for fast voxelization and segmenting the point cloud into three types of voxels, including coplanar, non-coplanar and sparse voxels. Secondly, the coplanar voxels, rather than the scattered points, are employed to estimate major orientations by using a bivariate Gaussian Kernel. Finally, the seed voxels are selected on the basis of major orientations and the region growing method based on voxels is applied to extract rock surfaces, resulting in sets of surface clusters. The sub-surfaces of each cluster are coplanar or parallel. In this paper, artificial icosahedron point cloud and natural rock-mass point clouds are used for testing the proposed method, respectively. The experimental results show that, the proposed method can effectively and accurately extract rock surfaces in unorganized rock-mass point clouds.


2015 ◽  
Vol 60 (4) ◽  
pp. 921-929 ◽  
Author(s):  
Anton Sroka ◽  
Stanisław Knothe ◽  
Krzysztof Tajduś ◽  
Rafał Misa

Abstract The geometric-integral theories of the rock mass point movements due to mining exploitation assume the relationship between the progress of subsidence and horizontal movement. By analysing the movement trace of a point located on the surface, and the influence of the mining exploitation in the rock mass, an equation describing the relationship between the main components of the deformation conditions was formulated. The result is consistent with the in situ observations and indicates the change of the rock mass component volume due to mining exploitation. The analyses and in situ observations demonstrate clearly that the continuity equation adopted in many solutions in the form: $\sum\limits_{i = 1}^{i = 3} {\varepsilon _{ii}= 0}$ is fundamentally incorrect.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhigang Meng ◽  
Manchao He ◽  
Zhigang Tao ◽  
Bin Li ◽  
Gang Zhao ◽  
...  

Yuanjue Cave is the core exquisite cultural relic of the Dazu Stone Carvings World Cultural Heritage Site. For hundreds of years, with the continuous effect of natural forces and the erosion of various deterioration factors, the sidewall and roof rock mass of Yuanjue Cave were eroded, some parts of supporting rock mass were fragmented, and the boundary conditions of the rock mass have deteriorated, which have seriously endangered the Yuanjue Cave; once the roof collapses, the national treasure in the cave will be destroyed. In order to preevaluate the stability characteristics of the Yuanjue Cave rock mass and provide key parameters for the preventive protection of the Yuanjue Cave, this paper firstly established a refined database of key parameters of Yuanjue Cave and adjacent areas (geometry, geology, physical properties) based on three-dimensional laser point cloud scanning, a fine survey of adjacent areas, engineering geophysical prospecting, and indoor multifactor coupling tests. Then, based on FLAC3D finite difference numerical simulation technology, an accurate three-dimensional numerical calculation model of Yuanjue Cave was constructed. Finally, the model was used to analyze the roof stability of Yuanjue Cavern, revealing the deformation laws of the Yuanjue Cave roof under static load conditions, and the numerical calculation results were compared with the on-site measured results, verifying the feasibility of the high-precision modeling method, and the reliability of the numerical calculation results provided a reference for the preventive protection of the cultural relics of the cave temple.


2021 ◽  
Author(s):  
Angela Caccia ◽  
Biagio Palma ◽  
Mario Parise

<p>Analysis of the stability conditions of rock masses starts from detailed geo-structural surveys based on a systematic and quantitative description of the systems of discontinuities. Traditionally, these surveys are performed by implementing the classical geomechanical systems, available in the scientific literature since several decades, through the use of simple tools such as the geological compass to measure dip and dip direction directly on the discontinuity systems, and to fully describe their more significant physical characteristics (length, spacing, roughness, persistence, aperture, filling, termination, etc.). In several cases, this can be difficult because the discontinuities, or even the rock face, cannot be easily accessible. To have a complete survey, very often the involvement of geologists climbers is required, but in many situations this work is not easy to carry out, and in any case it does not cover the whole rock front.</p><p>Today, to solve these problems, traditional geomechanical surveying is implemented by innovative remote techniques using, individually or in combination, instruments such as terrestrial laser scanners and unmanned aerial vehicles to build a point cloud.</p><p>This latter permits to extract very accurate data on discontinuities for stability analyses, based on areal and non-point observations. In addition, the point cloud allows to map sub-vertical walls in their entirety in much shorter times than traditional surveying.</p><p>At this regard, two rock slopes were detected in the Sorrento Peninsula (Campania, southern Italy) with techniques that include traditional mapping, dictated by the guidelines of the International Society for Rock Mechanics, and the remote survey, through laser scanning and drone photogrammetry. The data obtained were processed automatically and manually through the Dips, CloudCompare and Discontinuity Set Extractor softwares.</p><p>In the present contribution we highlight the limits and advantages of the main data collection and the processing techniques, and provide an evaluation of the software packages currently available for the analysis and evaluation of discontinuities, in order to obtain a better characterization of the rock mass.</p>


Sign in / Sign up

Export Citation Format

Share Document