multifactor coupling
Recently Published Documents


TOTAL DOCUMENTS

16
(FIVE YEARS 10)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Yuhu Luo ◽  
Bo Tian ◽  
Kaimin Niu

The occurrence and expansion of reflective cracking is a typical problem associated with the composite pavement that has a proven impact on the life of the continuous reinforced composite pavement. The current research studies a 3D finite element model to preset cracks at the top of the continuously reinforced concrete (CRC) layer’s transverse crack and at the bottom of the asphalt concrete (AC) layer based on the theory of linear elastic fracture mechanics in order to explore the factors responsible for the reflective cracking formation mechanism and expansion law. Considering the main stress parameters that affect the formation of reflective cracking (layer bottom tensile stress and vertical shear stress), the most unfavorable load position and the most unfavorable point of the corresponding stress parameter are determined that are then used to calculate the stress intensity factor of the crack tip under the coupling effect of multiple factors based upon the position and point above the crack, by using the confinement integral. The variance analysis of the stress intensity factor of the crack tip under the multifactor coupling effect is conducted via an orthogonal test in order to determine the main factors affecting the formation and development of reflective cracking. Meanwhile, the analysis of single-factor sensitivity is carried out on all these factors, which reveal the real contribution in the formation and expansion of reflective cracking in the continuous reinforced composite pavement. The results show that the most unfavorable load position for reflective cracking is when the load is on the side of the CRC layer’s lateral crack, while the most unfavorable point of the stress parameter is concentrated within the range of the wheel track. At the same time, analysis of multifactor variance and that of single-factor sensitivity show that the cracking mode of reflective cracking in the continuous reinforced composite pavement is a mixed one, dominated by K2 (slip type), supplemented by K1 (open type), and participated by K3 (tear type), whereas the AC layer’s preset-crack depth ratio, instantaneous temperature drop, and CRC-transverse-crack load transfer capacity are the main factors that affect the formation and development of the reflective cracking. Moreover, a better bonding state between the AC layer and the CRC layer improves the stress intensity factor of the preset crack tip on the bottom of the AC layer.


Author(s):  
Shuyi Ge ◽  
Liping Wang ◽  
Guang Yu

During five-axis flank milling procedure, the static deflection of workpiece and cutter creates surface errors that lead to defects in projects with strict requirements, especially in thin-walled parts industry. Focusing on the mentioned issues, the surface contour error is predicted in this paper considering the coupling between the deflection and cutting force. First, an efficient calculation method of the cutting force is presented in five-axis flank milling. This method accounts for the impact of cutter runout on cutter/workpiece engagement (CWE) and the instantaneous undeformed chip thickness (IUCT). Then, a cutter is modelled as a cantilever structure and thus an analytical solution for the deflection of the end mill can be obtained. Next, the flexible cutting force is distributed on a finite element (FE) model of workpiece, while the workpiece stiffness keeps varying with the material removal. Subsequently, a flexible iterative calculation method for achieving deflection prediction is established. Finally, the prediction model is proven by machining tests of an S-shaped specimen in which predicted values of the surface error match with the experimental results.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhigang Meng ◽  
Manchao He ◽  
Zhigang Tao ◽  
Bin Li ◽  
Gang Zhao ◽  
...  

Yuanjue Cave is the core exquisite cultural relic of the Dazu Stone Carvings World Cultural Heritage Site. For hundreds of years, with the continuous effect of natural forces and the erosion of various deterioration factors, the sidewall and roof rock mass of Yuanjue Cave were eroded, some parts of supporting rock mass were fragmented, and the boundary conditions of the rock mass have deteriorated, which have seriously endangered the Yuanjue Cave; once the roof collapses, the national treasure in the cave will be destroyed. In order to preevaluate the stability characteristics of the Yuanjue Cave rock mass and provide key parameters for the preventive protection of the Yuanjue Cave, this paper firstly established a refined database of key parameters of Yuanjue Cave and adjacent areas (geometry, geology, physical properties) based on three-dimensional laser point cloud scanning, a fine survey of adjacent areas, engineering geophysical prospecting, and indoor multifactor coupling tests. Then, based on FLAC3D finite difference numerical simulation technology, an accurate three-dimensional numerical calculation model of Yuanjue Cave was constructed. Finally, the model was used to analyze the roof stability of Yuanjue Cavern, revealing the deformation laws of the Yuanjue Cave roof under static load conditions, and the numerical calculation results were compared with the on-site measured results, verifying the feasibility of the high-precision modeling method, and the reliability of the numerical calculation results provided a reference for the preventive protection of the cultural relics of the cave temple.


2019 ◽  
Vol 6 (8) ◽  
pp. 190528
Author(s):  
Yulong Jiang ◽  
Tingting Cai ◽  
Xiaoqiang Zhang

To study the mining-induced failure depth of floor rocks in a fully mechanized mining caving field affected by different coal seam pitches, mining face lengths, burial depths and aquifer water pressures, multifactor-coupled orthogonal numerical tests on the failure depth of floor rocks were conducted. The numerical results show that the failure depth of floor rocks increases with increasing mining face length, coal seam pitch and burial depth. According to the relationship between failure depth and these impact factors, a multifactor-coupled prediction model for the failure depth of floor rocks was established. In addition, the in situ measurement of the failure depth of floor rocks in the Yitang Coal Mine in Huoxi coal field in Shanxi Province, China, was performed, and the in situ failure depths of floor rocks in the 100 502 (80 m) and 100 502 (180 m) mining faces were approximately 12.50–14.65 m and 17.50–19.20 m, in good agreement with the results of the multifactor prediction model. Furthermore, the sensitivity of each impact factor in the prediction model of the floor failure depth was further analysed by F -test and range analysis, and the impact order of studied factors on the floor failure depth is coal seam pitch > mining face length > burial depth > aquifer water pressure.


Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Weijian Yu ◽  
Genshui Wu ◽  
Baifu An ◽  
Ping Wang

After a gas drainage event causes different degrees of initial porosity in the coal seam, the heterogeneity of the coal mass becomes much more obvious. In this paper, soft coal testing samples with different degrees of heterogeneity were prepared first by a new special experimental research method using hydrogen peroxide in an alkaline medium to generate oxygen. Then, a series of mechanical tests on the soft coal mass samples were carried out under multiple factor coupling conditions of different heterogeneities and confining pressures. The results show that with a low strength, the ductility failure characteristic and a kind of rheology similar to that for soft rock flow were reflected for the soft coal; i.e., the stress-strain curve of the coal mass had no apparent peak strain and residual strength. An interesting phenomenon was found in the test process: there was an upwardly convex critical phase, called the brittle-ductile failure transition critical phase, for the heterogeneous soft coal mass between the initial elastic compression phase and the ductile failure transition phase in the stress-strain curve of the coal mass. An evolution of the brittle-ductile modulus coefficient of the soft coal was developed to analyze the effect of the internal factor (degree of heterogeneity) and external factors (confining pressure) on the transition state of the brittle-ductile failure of soft coal. Further analysis shows that the internal factor (heterogeneity) was also one of the essential factors causing the brittle-ductile transition of soft coal.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Zhe Li ◽  
Haojun Xu ◽  
Yuan Xue ◽  
Zhe Zhang ◽  
Xiaocong Duan

The quantitative assessment of flight risk under icing conditions was taken as the research object. Based on multifactor coupling modeling idea, the pilot-aircraft-environment coupling system was built. Considering the physical characteristics and randomness of aircraft icing, the extreme values of critical flight risk parameters were extracted by the Monte Carlo flight simulation experiment. The flight characteristics were studied comprehensively and heavy-tail characteristics and the distributions of different flight parameters were verified. Flight risk criterion was developed and one-dimensional extreme flight risk probability was calculated. Further, in order to solve the limitation of one-dimensional extreme value, with the Copula theory, the joint distribution model of flight parameters with three distinct distribution types was built. The optimal Copula model was selected by identification of unknown parameters and goodness of fit tests, and the three-dimensional extreme flight risk probability was defined. Based on the quantitative flight risk, the accident induction mechanism under icing conditions was discussed. Airspeed and roll angle under asymmetry icing conditions were more sensitive and had a more significant impact on flight safety. This method can provide reference for safety manipulation, boundary protection, and risk warning during icing flight.


2019 ◽  
Vol 31 (1) ◽  
pp. 186-194 ◽  
Author(s):  
Yun-qing Gu ◽  
Song-wei Yu ◽  
Jie-gang Mou ◽  
Tian-xing Fan ◽  
Shui-hua Zheng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document