scholarly journals Complex DNA Damage Induced by High Linear Energy Transfer Alpha-Particles and Protons Triggers a Specific Cellular DNA Damage Response

2018 ◽  
Vol 100 (3) ◽  
pp. 776-784 ◽  
Author(s):  
Rachel J. Carter ◽  
Catherine M. Nickson ◽  
James M. Thompson ◽  
Andrzej Kacperek ◽  
Mark A. Hill ◽  
...  
2021 ◽  
Author(s):  
Kerry Silva McPherson ◽  
Dmitry Korzhnev

Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alternation is a hallmark of...


2005 ◽  
Vol 79 (13) ◽  
pp. 8243-8248 ◽  
Author(s):  
Sara Klucking ◽  
Asha S. Collins ◽  
John A. T. Young

ABSTRACT The cytopathic effect (CPE) seen with some subgroups of avian sarcoma and leukosis virus (ASLV) is associated with viral Env activation of the death-promoting activity of TVB (a tumor necrosis factor receptor-related receptor that is most closely related to mammalian TNF-related apoptosis-inducing ligand [TRAIL] receptors) and with viral superinfection leading to unintegrated viral DNA (UVD) accumulation, which is presumed to activate a cellular DNA damage response. In this study, we employed cells that express signaling-deficient ASLV receptors to demonstrate that an ASLV CPE can be uncoupled from the death-promoting functions of the TVB receptor. However, these cell-killing events were associated with much higher levels of viral superinfection and DNA accumulation than those seen when the virus used signaling-competent TVB receptors. These findings suggest that a putative cellular DNA damage response that is activated by UVD accumulation might act in concert with the death-signaling pathways activated by Env-TVB interactions to trigger cell death. Such a model is consistent with the well-established synergy that exists between TRAIL-signaling pathways and DNA damage responses which is currently being exploited in cancer therapy regimens.


Oncotarget ◽  
2015 ◽  
Vol 6 (33) ◽  
pp. 34979-34991 ◽  
Author(s):  
Yuezhen Xue ◽  
Shen Yon Toh ◽  
Pingping He ◽  
Thimothy Lim ◽  
Diana Lim ◽  
...  

Viruses ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 938 ◽  
Author(s):  
Risso-Ballester ◽  
Sanjuán

Most DNA viruses exhibit relatively low rates of spontaneous mutation. However, the molecular mechanisms underlying DNA virus genetic stability remain unclear. In principle, mutation rates should not depend solely on polymerase fidelity, but also on factors such as DNA damage and repair efficiency. Most eukaryotic DNA viruses interact with the cellular DNA damage response (DDR), but the role of DDR pathways in preventing mutations in the virus has not been tested empirically. To address this goal, we serially transferred human adenovirus type 5 in cells in which the telangiectasia-mutated PI3K-related protein kinase (ATM), the ATM/Rad3-related (ATR) kinase, and the DNA-dependent protein kinase (DNA-PK) were chemically inactivated, as well as in control cells displaying normal DDR pathway functioning. High-fidelity deep sequencing of these viral populations revealed mutation frequencies in the order of one-millionth, with no detectable effect of the inactivation of DDR mediators ATM, ATR, and DNA-PK on adenovirus sequence variability. This suggests that these DDR pathways do not play a major role in determining adenovirus genetic diversity.


2020 ◽  
Vol 11 ◽  
Author(s):  
Xiaoqiao Yue ◽  
Chenjun Bai ◽  
Dafei Xie ◽  
Teng Ma ◽  
Ping-Kun Zhou

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) is a member of the phosphatidylinositol 3-kinase related kinase family, which can phosphorylate more than 700 substrates. As the core enzyme, DNA-PKcs forms the active DNA-PK holoenzyme with the Ku80/Ku70 heterodimer to play crucial roles in cellular DNA damage response (DDR). Once DNA double strand breaks (DSBs) occur in the cells, DNA-PKcs is promptly recruited into damage sites and activated. DNA-PKcs is auto-phosphorylated and phosphorylated by Ataxia-Telangiectasia Mutated at multiple sites, and phosphorylates other targets, participating in a series of DDR and repair processes, which determine the cells’ fates: DSBs NHEJ repair and pathway choice, replication stress response, cell cycle checkpoints, telomeres length maintenance, senescence, autophagy, etc. Due to the special and multi-faceted roles of DNA-PKcs in the cellular responses to DNA damage, it is important to precisely regulate the formation and dynamic of its functional complex and activities for guarding genomic stability. On the other hand, targeting DNA-PKcs has been considered as a promising strategy of exploring novel radiosensitizers and killing agents of cancer cells. Combining DNA-PKcs inhibitors with radiotherapy can effectively enhance the efficacy of radiotherapy, offering more possibilities for cancer therapy.


2017 ◽  
Author(s):  
Iqra Nadeem ◽  
Amna Aslam ◽  
Jingyuan Wang ◽  
Anna Kozlova ◽  
Danielle Gordon ◽  
...  

Science ◽  
2008 ◽  
Vol 320 (5882) ◽  
pp. 1507-1510 ◽  
Author(s):  
E. Soutoglou ◽  
T. Misteli

2018 ◽  
Vol 5 (1) ◽  
pp. 141-164 ◽  
Author(s):  
Matthew D. Weitzman ◽  
Amélie Fradet-Turcotte

Viral DNA genomes have limited coding capacity and therefore harness cellular factors to facilitate replication of their genomes and generate progeny virions. Studies of viruses and how they interact with cellular processes have historically provided seminal insights into basic biology and disease mechanisms. The replicative life cycles of many DNA viruses have been shown to engage components of the host DNA damage and repair machinery. Viruses have evolved numerous strategies to navigate the cellular DNA damage response. By hijacking and manipulating cellular replication and repair processes, DNA viruses can selectively harness or abrogate distinct components of the cellular machinery to complete their life cycles. Here, we highlight consequences for viral replication and host genome integrity during the dynamic interactions between virus and host.


Sign in / Sign up

Export Citation Format

Share Document