scholarly journals A modified Stillinger–Weber potential-based hyperelastic constitutive model for nonlinear elasticity

2014 ◽  
Vol 51 (7-8) ◽  
pp. 1542-1554 ◽  
Author(s):  
Zhennan Zhang ◽  
Yaxiong Chen ◽  
Hong Zheng
Author(s):  
Yan-Qing Wu ◽  
Feng-Lei Huang

AbstractAs orientation-dependence of shock-induced thermal responses and chemical reactions in energetic single crystals are related to anisotropic mechanical behavior, a crystal plasticity model for low-symmetric


Author(s):  
Yan-Qing Wu ◽  
Feng-Lei Huang

AbstractAs orientation-dependence of shock-induced thermal responses and chemical reactions in energetic single crystals are related to anisotropic mechanical behavior, a crystal plasticity model for low-symmetric


2017 ◽  
Vol 35 (1) ◽  
pp. 13-25 ◽  
Author(s):  
F. S. Jeng ◽  
M. C. Weng ◽  
F. H. Yeh ◽  
Y. H. Yang ◽  
T. H. Huang

AbstractIn rock engineering, evaluating the post-peak strength and deformation of rock is necessary. To explore the elasto-plastic behavior of sandstone in the post-peak stage, a series of strain-controlled triaxial tests were conducted under different confining pressures. According to the post-peak characteristics, a constitutive model based on nonlinear elasticity and generalized plasticity is proposed. This proposed model is characterized by the following features: (1) Nonlinear elasticity is observed under hydrostatic and shear loading; (2) the associated flow rule is followed; (3) substantial plastic deformation occurs during shear loading; and (4) post-peak softening behavior is accurately predicted. This model requires twelve material parameters, three for elasticity and nine for plasticity. The proposed model was validated by comparing the triaxial test results of Mushan sandstone at different hydrostatic pressures under dry and saturated conditions. In addition, the model is versatile; it can simulate the deformational behavior of two other sandstones. In summary, the proposed model can reasonably predict the complete stress–strain curve of sandstone.


1988 ◽  
Vol 49 (C3) ◽  
pp. C3-489-C3-496
Author(s):  
B. D. COLEMAN ◽  
M. L. HODGDON

Author(s):  
Van-Trang Nguyen ◽  
Minh-Quy Le

We study through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of (0, 24) armchair and (31, 0) zigzag black phosphorene nanotubes with approximately equal diameters. Young's modulus, critical stress and critical strain are estimated with various tube lengths. It is found that under uniaxial compression the (0, 24) armchair black phosphorene nanotube buckles, whereas the failure of the (31, 0) zigzag one is caused by local bond breaking near the boundary.


Sign in / Sign up

Export Citation Format

Share Document