scholarly journals Influence of boiler size and location on one-dimensional two-phase vertical pipe flow

2017 ◽  
Vol 121 ◽  
pp. 150-162 ◽  
Author(s):  
Antigoni Kleanthous ◽  
Robert A. Van Gorder
1992 ◽  
Vol 19 (1) ◽  
pp. 7-13 ◽  
Author(s):  
Manohar Gadiraju ◽  
John Peddieson ◽  
Sastry S. Munukutla

Author(s):  
Wongsakorn Wongsaroj ◽  
Hideharu Takahashi ◽  
Natee Thong-Un ◽  
Hiroshige Kikura

This study proposes an ultrasonic velocity profiler (UVP) with a single ultrasonic gas-liquid two-phase separation (SUTS) technique to measure the velocity distribution of vapor-liquid boiling bubbly flow. The proposed technique is capable of measuring the velocity of the vapor bubble and liquid separately in boiling conditions. To confirm the viability of the measurement technique, the experiment is conducted on vertical pipe flow apparatus. The ultrasonic transmission and effect of ultrasonic refraction through the pipe wall and water are investigated at ambient temperature until subcooled boiling temperature is reached. The velocity profile in the water at elevated temperature is measured to verify the ability of the technique in this application. The bubbly flow velocity distribution measurement in boiling conditions is then demonstrated. The results show that the proposed technique can effectively investigate the velocity of both phases under various fluid conditions in boiling bubbly flow.


Author(s):  
Tobias Giese ◽  
Eckart Laurien ◽  
Wolfgang Schwarz

Gravity driven pipe flows contain no risk of pump failure and are considered to be reliable even under accident conditions. However, accurate prediction methods are only available for single phase flow. In case of the occurrence of two-phase flow (caused e.g. by boiling or cavitation), a considerable reduction in mass flux can be observed. In this study, an experimental and numerical investigation of gravity driven two-phase pipe flow was performed in order to understand and model such flows. An experiment was conducted to analyse gravity driven flow of water near saturation temperature in a complex pipe consisting of several vertical and horizontal sections. The diameter was 100 mm with a driving height of 13 m between an elevated tank and the pipe outlet. The experiment shows that cavitation leads to formation of steam. The two-phase character of the flow causes a significant reduction of mass flux in comparison to a single phase flow case. The experimental flow rate was reproduced by one dimensional single and two phase flow analysis based on standard one dimensional methods including models for steam formation. The main part of this study consists of a three dimensional CFD analysis of the two phase flow. A three dimensional model for cavitation and recondensation phenomena based on thermal transport processes was developed, implemented and validated against our experimental data. Due to the fact that beside bubbly flow, also the stratified and droplet flow regimes occur, a new approach to model phase interaction terms of the Two-Fluid Model for mass, momentum and energy is presented. Thereby, the transition from one flow regime to another is taken into account. The experimental mass flow rate can be predicted with an accuracy of 10%. The three dimensional analysis of the flow situation demonstrates the influence of pipe elements such as horizontal and vertical sections, bends and valves of the pipe on the mass flux and the steam distribution. The analysis of secondary flows in bends emphases their importance for the steam distribution within the pipe, for the pressure loss and the average mass flux.


Author(s):  
Florentina Popa ◽  
Andrey Filippov ◽  
Brent C. Houchens

One-dimensional (1D), equilibrium-based mechanistic model predictions are compared to three-dimensional (3D) transient computational fluid dynamics results for horizontal two-phase, gas-liquid pipe flow. The 3D regions of interest include both those expected to be in equilibrium conditions and those where transitions between flow regimes occur. Equilibrium simulations, such as those for stratified flow in a horizontal pipe, allow crucial validation of the equilibrium-based closure relations by means of numerical experiments. In the transitional regions, fully 3D, time-dependent numerical simulations provide a means to estimate the error in the equilibrium-based models and suggest how reasonable approximations can be made in these regions.


Author(s):  
Alan Kalbfleisch ◽  
Kamran Siddiqui

Bubble breakers have been shown to be effective at reducing bubble size and delaying transition from bubbly to slug and churn flow regimes in the two-phase vertical pipe flow. If used in bubble column reactors, bubble breakers can increase the surface area-volume ratio of the gas-liquid interface allowing for an enhanced mass transfer or chemical reaction rate. Studies have been done showing the effect of bubble breakers on bubbles size and flow regime but none exist to show the effect of a bubble breaker on heat transfer for a two-phase pipe flow. A new method of measuring the heat transfer for a two-phase vertical pipe flow is proposed in the current study. The method uses thermocouples inserted directly into the flow for bulk fluid temperature measurements and a thermal camera for surface temperature measurements of a thin walled stainless steel pipe. Heat transfer measurements, expressed as a Nusselt number, for a single phase laminar liquid flow are compared to accepted values to show the validity of the experimental method. Preliminary results of two-phase gas-liquid heat transfer rates with and without a bubble breaker present in the vertical pipe are compared. The liquid flowrates used in the experiment represented superficial Reynolds numbers of ReI<2000 and the gas flowrates used in the experiment represented superficial Reynolds numbers of Reg<100. Without a bubble breaker, the convective heat transfer coefficient, represented as Nusselt number, was found to decrease with increasing gas flowrate. When a bubble breaker was added, the effect on the heat transfer was dependent on the flow regime. For most cases, the bubble breaker had very little effect on the measured heat transfer rate. In a case where the bubble breaker was able to generate slug flow rather than churn flow that was generated when no bubble breaker was present, the measured Nusselt number was increased.


2013 ◽  
Vol 35 (3) ◽  
Author(s):  
Tat Thang Nguyen ◽  
Hiroshige Kikura ◽  
Ngoc Hai Duong ◽  
Hideki Murakawa ◽  
Nobuyoshi Tsuzuki

Ultrasonic Velocity Profile (UVP) method for measurement of single-phase and two-phase flow in a vertical pipe has recently been developed in the Laboratory for industrial and Environmental Fluid Dynamics, Institute of Mechanics, VAST. The signal processings of the UVP method include the ultrasonic pulse Doppler method (UDM)and the ultrasonic time-domain cross-correlation (UTDC) method. For two-phase flow, simultaneous measurements of both liquid and gas are enabled by using a multi-wave ultrasonic transducer (multi-wave TDX). The multi-wave TDX is able to emit and receive ultrasound of two different center frequencies of 2 MHz and 8 MHz at the same time and position. 2 MHz frequency with beam diameter 10 mm is exploited for measurement of gas. 8 MHz one with beam diameter 3 mm is used for liquid. Measurements have been carried out for laminar and turbulent single-phase flows and bubbly counter-current two-phase flows in two flow loops using two vertical pipes of 26 mm inner diameter (I.D.) and 50 mm I.D. respectively. Based on the measured results, assessment of each method is clarified. Applicability of each method for different conditions of pipe flow has been tested. Suggestions for application of the two methods have been recommended.


2015 ◽  
Vol 25 (9) ◽  
pp. 795-817 ◽  
Author(s):  
Mika P. Jarvinen ◽  
A. E. P. Kankkunen ◽  
R. Virtanen ◽  
P. H. Miikkulainen ◽  
V. P. Heikkila

2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


Sign in / Sign up

Export Citation Format

Share Document