scholarly journals Heat flux balance description of unidirectional freezing and melting dynamics on a translational temperature gradient stage

Author(s):  
Michael Chasnitsky ◽  
Victor Yashunsky ◽  
Ido Braslavsky
1971 ◽  
Vol 45 (4) ◽  
pp. 759-768 ◽  
Author(s):  
M. M. R. Williams

The effect of a temperature gradient in a gas inclined at an angle to a boundary wall has been investigated. For an infinite half-space of gas it is found that, in addition to the conventional temperature slip problem, the component of the temperature gradient parallel to the wall induces a net mass flow known as thermal creep. We show that the temperature slip and thermal creep effects can be decoupled and treated quite separately.Expressions are obtained for the creep velocity and heat flux, both far from and at the boundary; it is noted that thermal creep tends to reduce the effective thermal conductivity of the medium.


1995 ◽  
Vol 09 (09) ◽  
pp. 1113-1122 ◽  
Author(s):  
LIQIU WANG

The symmetry and positive definiteness of thermal conductivity tensor K are used to derive some properties of heat flux functions ɸi (i=0, 1, 2). All ɸi are shown to be real-valued. Both ɸ0 and ɸ2 are found to be positive definite, and ɸ1 is constrained between −(ɸ0 + ɸ2) and (ɸ0 + ɸ2). By assuming heat flux vector q to be a linear function of temperature gradient ∇θ and velocity strain tensor D, ɸi reduce to three coefficients which are independent of D and ∇θ.


2017 ◽  
Vol 34 (11) ◽  
pp. 2533-2546 ◽  
Author(s):  
Johannes Becherer ◽  
James N. Moum

AbstractA scheme for significantly reducing data sampled on turbulence devices (χpods) deployed on remote oceanographic moorings is proposed. Each χpod is equipped with a pitot-static tube, two fast-response thermistors, a three-axis linear accelerometer, and a compass. In preprocessing, voltage means, variances, and amplitude of the subrange (inertial-convective subrange of the turbulence) of the voltage spectrum representing the temperature gradient are computed. Postprocessing converts voltages to engineering units, in particular mean flow speed (and velocity), temperature, temperature gradient, and the rate of destruction of the temperature variance χ from which other turbulence quantities, such as heat flux, are derived. On 10-min averages, this scheme reduces the data by a factor of roughly 24 000 with a small (5%) low bias compared to complete estimates using inertial-convective subrange scaling of calibrated temperature gradient spectra.


2013 ◽  
Vol 723 ◽  
pp. 91-125 ◽  
Author(s):  
W. M. J. Lazeroms ◽  
G. Brethouwer ◽  
S. Wallin ◽  
A. V. Johansson

AbstractThis work describes the derivation of an algebraic model for the Reynolds stresses and turbulent heat flux in stably stratified turbulent flows, which are mutually coupled for this type of flow. For general two-dimensional mean flows, we present a correct way of expressing the Reynolds-stress anisotropy and the (normalized) turbulent heat flux as tensorial combinations of the mean strain rate, the mean rotation rate, the mean temperature gradient and gravity. A system of linear equations is derived for the coefficients in these expansions, which can easily be solved with computer algebra software for a specific choice of the model constants. The general model is simplified in the case of parallel mean shear flows where the temperature gradient is aligned with gravity. For this case, fully explicit and coupled expressions for the Reynolds-stress tensor and heat-flux vector are given. A self-consistent derivation of this model would, however, require finding a root of a polynomial equation of sixth-order, for which no simple analytical expression exists. Therefore, the nonlinear part of the algebraic equations is modelled through an approximation that is close to the consistent formulation. By using the framework of a$K\text{{\ndash}} \omega $model (where$K$is turbulent kinetic energy and$\omega $an inverse time scale) and, where needed, near-wall corrections, the model is applied to homogeneous shear flow and turbulent channel flow, both with stable stratification. For the case of homogeneous shear flow, the model predicts a critical Richardson number of 0.25 above which the turbulent kinetic energy decays to zero. The channel-flow results agree well with DNS data. Furthermore, the model is shown to be robust and approximately self-consistent. It also fulfils the requirements of realizability.


Author(s):  
Sepideh Kavousi ◽  
Dorel Moldovan

Using phase field modeling simulation approach we investigate the effect of various parameters on the primary and secondary dendrite arm spacing during directional solidification in a single component system. In previous studies the effect of temperature gradient was assumed to be negligible in the transversal directions with a temperature rate equal to the product of thermal gradient and solidification rate. In our study the temperature field is obtained from energy conservation equation by considering the balance of latent heat released in the regions where solidification occurs and energy dissipation due to directional temperature gradient as boundary condition. In our simulations, we implemented a numerical method that enables the investigation of solidification in larger domains. Specifically, the temperature and the order parameter equations are solved only in the domains close to the solidification front; approach that reduces the computational costs significantly. We investigate the interplay and the effect of thermal gradient, solidification rate, undercooling temperature, and the cooling heat flux on arm spacing. By using a well-established power law relation the primary and secondary arm spacing are calculated for various solidification parameters. We also show that, for large heat fluxes, the secondary arm spacing is almost constant for different undercooling temperatures; behavior that demonstrates the need for correction of the power law relation by including the effect of heat flux.


2009 ◽  
Vol 23 (03) ◽  
pp. 381-384
Author(s):  
YOUN-JEA KIM ◽  
JIN-SOO PYO

To evaluate the performance of discharged foam agents used to protect structures from heat and fire damages, the thermal characteristics of fire-extinguishment foams were experimentally investigated. Especially, two different parameters of a spray nozzle, that is, the number of air holes and the orifice diameter, were considered. A simple repeatable test for fire-extinguishment foams subjected to fire radiation was performed. Experimental results showed that the expansion ratio of the discharged foam with the small orifice throat ( d 0= 9.5 mm ) and opened air hole ( N h =9) was large. Results also showed that although the temperature gradient in the foam increased as the foam expansion ratio is increased, it remained constant as the intensity of heat flux increased.


Sign in / Sign up

Export Citation Format

Share Document