Modulation of CD8+ T-cell activation events by monocytic and granulocytic myeloid-derived suppressor cells

Immunobiology ◽  
2013 ◽  
Vol 218 (11) ◽  
pp. 1385-1391 ◽  
Author(s):  
Elio Schouppe ◽  
Eva Van Overmeire ◽  
Damya Laoui ◽  
Jiri Keirsse ◽  
Jo A. Van Ginderachter
2009 ◽  
Vol 70 (1) ◽  
pp. 68-77 ◽  
Author(s):  
Minu K. Srivastava ◽  
Pratima Sinha ◽  
Virginia K. Clements ◽  
Paulo Rodriguez ◽  
Suzanne Ostrand-Rosenberg

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi92-vi93
Author(s):  
Gregory Takacs ◽  
Christian Kreiger ◽  
Defang Luo ◽  
Joseph Flores-Toro ◽  
Loic Deleyrolle ◽  
...  

Abstract INTRODUCTION Mounting evidence suggests infiltrating immune-suppressive cells contribute to immune checkpoint inhibitor resistance and poor survival in Glioblastoma (GBM) patients. We have previously shown glioma-associated monocytic-myeloid derived suppressor cells (M-MDSCs) express chemokine receptors CCR2 and CX3CR1. Genetic and pharmacologic targeting of CCR2 promoted sequestration of M-MDSCs in the bone marrow and, in combination with PD-1 blockade, slowed progression of KR158 and 005GSC murine gliomas. This combination treatment also enhanced infiltration of IFNg-producing T cells that were less exhausted. Although CCR2+/CX3CR1+ cells display surface markers indicative of bone marrow-derived M-MDSCs, additional studies are needed to formally establish the source of these cells and to determine if they exhibit an immune-suppressive phenotype as well as migrate to the CCR2 ligands, CCL2 and/or CCL7. OBJECTIVE Evaluate the source, migration, and immune suppressive function of CCR2+/CX3CR1+ myeloid cells from glioma bearing mice. METHODS To identify the source of CCR2+/CX3CR1+ myeloid cells, chimeric wild type mice harboring bone marrow cells from transgenic CCR2WT/RFP/CX3CR1WT/GFP mice were generated. CCR2+/CX3CR1+ cells were enriched from bone marrow obtained from either wild-type or CCR2WT/RFP/CX3CR1WT/GFP naïve and glioma-bearing mice in order to evaluate their immune suppressive phenotype and ability to migrate to CCL2 and CCL7. RESULTS CCR2+/CX3CR1+ cells are present in glioma isolates from chimeric mice, indicative of a bone marrow-derived cell population, and are detectable within the tumor microenvironment as early as 3 days post orthotopic implantation of KR158 cells; these cells accumulate as tumors increase in size (r=0.7605, p=0.007). CCR2+/CX3CR1+ M-MDSCs isolated from the bone marrow of tumor bearing mice suppress CD8+ T cell production of IFNg and migrate to CCL2 more efficiently than CCL7. CONCLUSION CCR2+/CX3CR1+ cells from glioma bearing mice are derived from the bone marrow and represent an immune suppressive population that migrates to CCL2.


Blood ◽  
2011 ◽  
Vol 117 (20) ◽  
pp. 5381-5390 ◽  
Author(s):  
Pratima Sinha ◽  
Olesya Chornoguz ◽  
Virginia K. Clements ◽  
Konstantin A. Artemenko ◽  
Roman A. Zubarev ◽  
...  

Abstract Myeloid-derived suppressor cells (MDSCs) inhibit adaptive and innate immunity and accumulate in the blood of persons with cancer, chronic inflammation, trauma, infection, and stress. Some of the factors inducing their accumulation are known; however, mechanisms regulating their turnover have not been identified. Mass spectrometry showed prominent expression of apoptosis pathway proteins, suggesting that MDSC turnover may be regulated by Fas-FasL–mediated apoptosis. This hypothesis was confirmed by showing that blood MDSCs induced by 3 mouse tumors were Fas+ and apoptosed in response to Fas agonist in vitro and to activated FasL+ T cells in vivo. FasL-deficient mice contained significantly more blood MDSCs than FasL+/+ mice, and after removal of primary tumors MDSCs regressed in STAT6−/− and CD1−/− mice but not in STAT6−/−FasL−/− or CD1−/−FasL−/− mice. Fas+ macrophages and dendritic cells did not apoptose in response to activated T cells, indicating that Fas-FasL regulation of myeloid cells was restricted to MDSCs. These results identify a new mechanism regulating MDSC levels in vivo and show a retaliatory relationship between T cells and MDSCs in that MDSCs suppress T-cell activation; however, once activated, T cells mediate MDSC apoptosis.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 1702-1702
Author(s):  
Sterling Eckard ◽  
Bianca Rojo ◽  
Victoria Smith ◽  
Patrick Chun

Abstract Background Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive tumor environment and are a barrier to immune therapeutic approaches, including cell-based therapies such as chimeric antigen receptor T cells (CAR T). Despite good overall response rates with certain subsets of B cell leukemias and lymphomas, a significant percentage of patients treated with CAR T therapy do not respond or subsequently relapse. Poor CAR T expansion, poor persistence of infused cells, and clinical treatment failure are associated with tumor and systemic immune dysregulation including high blood levels of peripheral blood monocytic MDSC (M-MDSCs) and interleukin-6, both of which are associated with lack of durable responses 1. In addition, CAR T therapy has been limited by the occurrence of severe cytokine release syndrome (CRS), which is associated with high IL-6 production 2 by myeloid cells such as MDSC. AMV564 is a potent T cell engager that selectively depletes MDSC while promoting T cell activation and proliferation without significant IL-6 induction 3. In phase 1 studies in acute myeloid leukemia (AML), myelodysplastic syndrome (MDS), and solid tumors, AMV564 has been demonstrated to be clinically safe and active with some patients achieving complete remissions. Methods Cell lines, primary human cells, and patient samples were analyzed using flow cytometry with appropriate marker panels. T cell activation and cytotoxicity assays were conducted using primary human T cells from healthy donors and target cells (3:1 ratio) for 72 hours. T cell activation using ImmunoCult Human CD3/CD28 served as an assay reference. Results Analysis of patients treated with AMV564 demonstrated statistically significant selective depletion of M-MDSC by cycle 2 (Fig. 1A). While on AMV564 therapy, median IL-6 levels remained below 100 pg/mL despite robust T cell activation and expansion. Granzyme B production by CD8 T cells increased significantly between Cycle 1 and Cycle 2 in patients on therapy, and effector CD8 T cells expand over the course of treatment (Fig. 1B-C). These data collectively support the finding that AMV564 both removes a key source of immune suppression and is a potent agonist of T cell function and differentiation in patients. AMV564 potently activates and expands primary T cells ex vivo. Across donors, peak proliferation was significantly higher with AMV564 than with the CD3/CD28 reference (Fig. 2A). Importantly, T cell viability remained significantly higher with AMV564 when compared to reference control (CD3/CD28), and there was no evidence of activation-induced cell death (AICD) in AMV564-treated samples (Fig. 2B). Conclusions AMV564 depletes MDSC and stimulates expansion and longevity of T cells without significant IL-6 induction, suggesting a possible strategy for improvement in efficacy of cell-based therapy such as CAR T approaches. As circulating M-MDSC both at baseline and after CAR T infusion correlate with poor clinical efficacy 4, AMV564 may have beneficial effects during the conditioning phase of cell therapy, after re-infusion of CAR T products into patients, or both. Ex vivo studies using donor T cells and ongoing in vitro studies using CAR T molecules suggest that AMV564 may provide dual benefit with respect to both depletion of MDSC and T cell agonism. References 1. Jain, et al; Blood 2021; 137 (19): 2621-2633. doi: https://doi.org/10.1182/blood.2020007445 2. Li et al., Sci. Transl. Med. 11, eaax8861 (2019) 3. Eckard et al; Cancer Res 2021; (81) (13 Supplement) 528; DOI: 10.1158/1538-7445.AM2021-528 4. Jain, et al; Blood 2019; 134 (Supplement_1): 2885. doi: https://doi.org/10.1182/blood-2019-131041 Figure 1 Figure 1. Disclosures Eckard: Amphivena Therapeutics: Current Employment. Rojo: Amphivena Therapeutics: Current Employment. Smith: Amphivena Therapeutics: Current Employment. Chun: Amphivena Therapeutics: Current Employment.


2018 ◽  
Vol 115 (40) ◽  
pp. 10094-10099 ◽  
Author(s):  
Shan Feng ◽  
Xi Cheng ◽  
Lin Zhang ◽  
Xuemin Lu ◽  
Seema Chaudhary ◽  
...  

Potent immunosuppressive mechanisms within the tumor microenvironment contribute to the resistance of aggressive human cancers to immune checkpoint blockade (ICB) therapy. One of the main mechanisms for myeloid-derived suppressor cells (MDSCs) to induce T cell tolerance is through secretion of reactive nitrogen species (RNS), which nitrates tyrosine residues in proteins involved in T cell function. However, so far very few nitrated proteins have been identified. Here, using a transgenic mouse model of prostate cancer and a syngeneic cell line model of lung cancer, we applied a nitroproteomic approach based on chemical derivation of 3-nitrotyrosine and identified that lymphocyte-specific protein tyrosine kinase (LCK), an initiating tyrosine kinase in the T cell receptor signaling cascade, is nitrated at Tyr394 by MDSCs. LCK nitration inhibits T cell activation, leading to reduced interleukin 2 (IL2) production and proliferation. In human T cells with defective endogenous LCK, wild type, but not nitrated LCK, rescues IL2 production. In the mouse model of castration-resistant prostate cancer (CRPC) by prostate-specific deletion ofPten,p53, andSmad4, CRPC is resistant to an ICB therapy composed of antiprogrammed cell death 1 (PD1) and anticytotoxic–T lymphocyte-associated protein 4 (CTLA4) antibodies. However, we showed that ICB elicits strong anti-CRPC efficacy when combined with an RNS neutralizing agent. Together, these data identify a previously unknown mechanism of T cell inactivation by MDSC-induced protein nitration and illuminate a clinical path hypothesis for combining ICB with RNS-reducing agents in the treatment of CRPC.


MicroRNA ◽  
2015 ◽  
Vol 4 (2) ◽  
pp. 117-122 ◽  
Author(s):  
Nato Teteloshvili ◽  
Katarzyna Smigielska-Czepiel ◽  
Bart-Jan Kroesen ◽  
Elisabeth Brouwer ◽  
Joost Kluiver ◽  
...  

2021 ◽  
Vol 147 (2) ◽  
pp. AB151
Author(s):  
Jose Campos ◽  
Peyton Conrey ◽  
Samir Sayed ◽  
Tiphanie Vogel ◽  
Jennifer Leiding ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document