Characterization of Syagrus romanzoffiana oil aiming at biodiesel production

2013 ◽  
Vol 48 ◽  
pp. 57-60 ◽  
Author(s):  
M.A.C. Moreira ◽  
M.E. Payret Arrúa ◽  
A.C. Antunes ◽  
T.E.R. Fiuza ◽  
B.J. Costa ◽  
...  
2021 ◽  
Vol 170 ◽  
pp. 302-314
Author(s):  
Adeyinka S. Yusuff ◽  
Aman K. Bhonsle ◽  
Jayati Trivedi ◽  
Dinesh P. Bangwal ◽  
Lok P. Singh ◽  
...  

Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 427 ◽  
Author(s):  
Muhammad Awais ◽  
Sa’ed A Musmar ◽  
Faryal Kabir ◽  
Iram Batool ◽  
Muhammad Asif Rasheed ◽  
...  

Biodiesel is a renewable fuel usually produced from vegetable oils and animal fats. This study investigates the extraction of oil and its conversion into biodiesel by base-catalyzed transesterification. Firstly, the effect of various solvents (methanol, n-hexane, chloroform, di-ethyl ether) on extraction of oil from non-edible crops, such as R. communis and M. azedarach, were examined. It was observed that a higher concentration of oil was obtained from R. communis (43.6%) as compared to M. azedarach (35.6%) by using methanol and n-hexane, respectively. The extracted oils were subjected to NaOH (1%) catalyzed transesterification by analyzing the effect of oil/methanol molar ratio (1:4, 1:6, 1:8 and 1:10) and varying temperature (20, 40, 60 and 80 °C) for 2.5 h of reaction time. M. azedarach yielded 88% and R. communis yielded 93% biodiesel in 1:6 and 1:8 molar concentrations at ambient temperature whereas, 60 °C was selected as an optimum temperature, giving 90% (M. azedarach) and 94% (R. communis) biodiesel. The extracted oil and biodiesel were characterized for various parameters and most of the properties fulfilled the American Society for Testing and Materials (ASTM) standard biodiesel. The further characterization of fatty acids was done by Gas Chromatography/Mass Spectrometer (GC/MS) and oleic acid was found to be dominant in M. azedarach (61.5%) and R. communis contained ricinoleic acid (75.53%). Furthermore, the functional groups were analyzed by Fourier Transform Infrared Spectroscopy. The results suggested that both of the oils are easily available and can be used for commercial biodiesel production at a cost-effective scale.


2013 ◽  
Vol 845 ◽  
pp. 457-461
Author(s):  
Ramli Mat ◽  
Junaidah Buhari ◽  
Mahadhir Mohamed ◽  
Anwar Johari ◽  
Tuan Amran Tuan Abdullah ◽  
...  

Glycerol is the main by-product of biodiesel production and during the trans-esterification reaction, about 10 wt % of glycerol is produced. In this study, different amount of Ni was loaded on HZSM-5 and tested for the conversion of glycerol to hydrogen. The studies were also conducted at different reactor temperature of 450, 500, 550, 600 and 650°C respectively. The structural characterization of the catalyst was carried out using the XRD. It was found that, the addition of 15 wt % of nickel loaded on HZSM-5 shows the highest glycerol conversion of 98.54%. In addition, it produces the highest yield of hydrogen gas operated at reactor temperature of 600°C.


2018 ◽  
Vol 267 ◽  
pp. 466-472 ◽  
Author(s):  
Yimeng Lin ◽  
Jingping Ge ◽  
Hongzhi Ling ◽  
Yunye Zhang ◽  
Xiufeng Yan ◽  
...  

2015 ◽  
Vol 74 ◽  
pp. 774-781 ◽  
Author(s):  
Ritu Tripathi ◽  
Jyoti Singh ◽  
Indu Shekhar Thakur
Keyword(s):  

2012 ◽  
Vol 29 (3) ◽  
pp. 332-344 ◽  
Author(s):  
Simrat Kaur ◽  
Manas Sarkar ◽  
Ravi B. Srivastava ◽  
Hemanta K. Gogoi ◽  
Mohan C. Kalita

Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 511 ◽  
Author(s):  
Sara Arana-Peña ◽  
Yuliya Lokha ◽  
Roberto Fernández-Lafuente

Eversa is an enzyme recently launched by Novozymes to be used in a free form as biocatalyst in biodiesel production. This paper shows for first time the immobilization of Eversa (a commercial lipase) on octyl and aminated agarose beads and the comparison of the enzyme properties to those of the most used lipase, the isoform B from Candida antarctica (CALB) immobilized on octyl agarose beads. Immobilization on octyl and aminated supports of Eversa has not had a significant effect on enzyme activity versus p-nitrophenyl butyrate (pNPB) under standard conditions (pH 7), but immobilization on octyl agarose beads greatly enhanced the stability of the enzyme under all studied conditions, much more than immobilization on aminated support. Octyl-Eversa was much more stable than octyl-CALB at pH 9, but it was less stable at pH 5. In the presence of 90% acetonitrile or dioxane, octyl-Eversa maintained the activity (even increased the activity) after 45 days of incubation in a similar way to octyl-CALB, but in 90% of methanol, results are much worse, and octyl-CALB became much more stable than Eversa. Coating with PEI has not a clear effect on octyl-Eversa stability, although it affected enzyme specificity and activity response to the changes in the pH. Eversa immobilized octyl supports was more active than CALB versus triacetin or pNPB, but much less active versus methyl mandelate esters. On the other hand, Eversa specificity and response to changes in the medium were greatly modulated by the immobilization protocol or by the coating of the immobilized enzyme with PEI. Thus, Eversa may be a promising biocatalyst for many processes different to the biodiesel production and its properties may be greatly improved following a suitable immobilization protocol, and in some cases is more stable and active than CALB.


2014 ◽  
Vol 169 ◽  
pp. 328-335 ◽  
Author(s):  
Manisha Tale ◽  
Sukhendu Ghosh ◽  
Balasaheb Kapadnis ◽  
Sharad Kale

Sign in / Sign up

Export Citation Format

Share Document