Biodiesel derived crude glycerol and tuna condensate as an alternative low-cost fermentation medium for ethanol production by Enterobacter aerogenes

2019 ◽  
Vol 138 ◽  
pp. 111451 ◽  
Author(s):  
Juli Novianto Sunarno ◽  
Poonsuk Prasertsan ◽  
Wiriya Duangsuwan ◽  
Benjamas Cheirsilp ◽  
Kanokphorn Sangkharak
Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6981
Author(s):  
Simge Sertkaya ◽  
Nuri Azbar ◽  
Haris Nalakath Abubackar ◽  
Tugba Keskin Gundogdu

Syngas fermentation via the Wood-Ljungdahl (WL) pathway is a promising approach for converting gaseous pollutants (CO and CO2) into high-value commodities. Because the WL involves several enzymes with trace metal components, it requires an adequate supply of micronutrients in the fermentation medium for targeted bioprocessing such as bioethanol production. Plackett-Burman statistical analysis was performed to examine the most efficient trace elements (Ni, Mg, Ca, Mn, Co, Cu, B, W, Zn, Fe, and Mo) and their concentrations for Clostridium ljungdahlii on ethanol production. Overall, 1.5 to 2.5 fold improvement in ethanol production could be achieved with designed trace element concentrations. The effects of tungsten and copper on ethanol and biomass production were determined to be the most significant, respectively. The model developed was statistically significant and has the potential to significantly decrease the cost of trace element solutions by 18–22%. This research demonstrates the critical importance of optimizing the medium for syngas fermentation in terms of product distribution and economic feasibility.


Author(s):  
Joselma Ferreira da Silva ◽  
Naiara Priscila Silva Reis Barbosa ◽  
Matheus Tavares do Nascimento França ◽  
Laureen Michelle Houllou ◽  
Carolina Barbosa Malafaia

The development of research for the production of biofuels using low cost substrate has become more relevant in recent years. These include reuse of residues such as crude residual glycerol from biodiesel (CRG) and cheese whey (CW) from the dairy industry. The present work evaluated the ethanol production by isolates of the yeast Kluyveromyces marxianus using agroindustrial residues as an alternative source of carbon. The cultures were rotated 100 rpm at 30 ° C for 24 h. The ethanol production was observed in both media, however, in the CW higher values of ethanol were observed in relation to the CRG. The results showed that K. marxianus isolates were adapted to the use of lactose present in cheese whey as a source of carbon for the production of ethanol with concentrations ranging from 11.41 to 19.9 g.L-1, but did not demonstrate efficiency in the use of crude glycerol for this purpose


2011 ◽  
Vol 35 (1-2) ◽  
pp. 85-92 ◽  
Author(s):  
Sang Jun Lee ◽  
Sung Bong Kim ◽  
Seong Woo Kang ◽  
Sung Ok Han ◽  
Chulhwan Park ◽  
...  

2010 ◽  
Vol 150 ◽  
pp. 160-160
Author(s):  
Sang Jun Lee ◽  
Sung Bong Kim ◽  
Seong Woo Kang ◽  
Sung Ok Han ◽  
Chulhwan Park ◽  
...  

2012 ◽  
Vol 160 (3-4) ◽  
pp. 229-235 ◽  
Author(s):  
Yu Shen ◽  
Jin-Song Guo ◽  
You-Peng Chen ◽  
Hai-Dong Zhang ◽  
Xu-Xu Zheng ◽  
...  

2020 ◽  
Vol 12 (17) ◽  
pp. 7122
Author(s):  
Ludwika Tomaszewska-Hetman ◽  
Waldemar Rymowicz ◽  
Anita Rywińska

The study proposed the innovative low-cost strategy for erythritol production by Yarrowia lipolytica through developing a simple medium based on industrial waste by-products and a natural method for culture broth purification. Results obtained proved that corn steep liquor might successfully replace traditional sources of nitrogen and other nutrients without compromising activities of the enzymes responsible for erythritol production and its production level. As a consequence, a production process was performed where Y. lipolytica A-6 was able to produce 108.0 g/L of erythritol, with a production rate of 1.04 g/Lh and a yield of 0.45 g/g of the medium containing exclusively 220 g/L of crude glycerol derived from biodiesel production and 40 g/L of corn steep liquor. Moreover, a comparable concentration of erythritol (108.1 g/L) was obtained when a part of crude glycerol was exchanged for the crude fraction of fatty acids in the two-steps process. Next, the collected post-fermentation broths were used in the culture with Y. lipolytica Wratislavia K1 for natural purification. The process resulted in a high increase of erythritol selectivity from 72% to 97% and in the production of 22.0 g/L of biomass with 40.4% protein content, which enables its use as an attractive animal feedstuff.


2021 ◽  
Author(s):  
Rahat Nawaz ◽  
Sayed Tayyab Raza Naqvi ◽  
Batool Fatima ◽  
Nazia Zulfiqar ◽  
Muhammad Umer Farooq ◽  
...  

Abstract Nonwoven cotton fabric has been fabricated and designed for antibacterial applications using low cost and ecofriendly precursors. The treatment of fabric with alkali leads to formation of active sites. The surfaces were dip coated with silver nanaoparticles and chitosan. The surface was chlorinated in next step to transform amide (N-H) groups in chitosan into N-halamine (N-Cl). The modified and unmodified surfaces of the nonwoven cotton fabric have been characterized by FTIR, SEM, and XRD. The active chlorine loading is measured with iodine/ sodium thiosulphate. The antimicrobial activity and cell toxicity assay were carried out with and without modifications of nonwoven cotton fabric. The antimicrobial efficacies of loaded fabric were evaluated against four bacterial species (Micrococcus lutes, Staphylococcus aurea, Enterobacter aerogenes, and E.coli). It was found that modified fabric exhibited superior efficiency against gram-positive and gram-negative bacterial strains as compared to their bulk counterparts upon exposure without destroying and affecting fabric nature. The overall process is economical for commercial purposes. The modified fabric can be used for antimicrobial, health, and food packaging industries, and in other biomedical applications.


EKUILIBIUM ◽  
2012 ◽  
Vol 11 (2) ◽  
Author(s):  
Margono Margono

<p><strong><em>Abstract:</em></strong> <em>Renewable energy necesity have promote research on ethanol production technology. Ethanol is the potential renewable energy substituting gasoline. However, the conventional problem is high price of the ethanol. The objective of this research was to test the performance of alternative process in producing ethanol, i.e. combination of fermentation process with ethanol stripping in trickle bed bioreactor. The experimental was using Saccharomyces cerevisiae FNCC 3012 and sugarcane bagass as bed particle. It was devided into 2 process steps of biofilm development and ethanol production. Biofilm development was done by circulating medium in bioreactor aerobically. Duration of the biofilm development was 24 hours and followed by ethanol production step which was combinating anaerobic fermentation and stripping process using nitrogen. Production process was conducted for 36 hours lifetime. This method resulted biofilm developing in fermentation medium, not on baggas surfaces. Consequently, ethanol production happened in circulated fermentation medium. The productivity of this method of ethanol production process was not better than the conventional process. Neverherless, the experimental showed that the product stripping and fermentation could be done simultaneously. The stripping process increased ethanol product concentration up to 25% higher than in the broth</em>.</p><p> <strong><em>Keywords:</em></strong> <em>ethanol, Saccharomyces cerevisiae FNCC 3012, trickle bed bioreactor, stripping, biofilm</em></p>


Sign in / Sign up

Export Citation Format

Share Document