Bio-inspired self-bonding nanofibrillated cellulose composite: A response surface methodology for optimization of processing variables in binderless biomass materials produced from wheat-straw-lignocelluloses

2020 ◽  
Vol 149 ◽  
pp. 112335 ◽  
Author(s):  
Yushan Yang ◽  
Huajie Shen ◽  
Jian Qiu
2013 ◽  
Vol 59 (No. 12) ◽  
pp. 537-542 ◽  
Author(s):  
K. Jaisamut ◽  
L. Paulová ◽  
P. Patáková ◽  
M. Rychtera ◽  
K. Melzoch

Alkali pretreatment of wheat straw was optimized by response surface methodology to maximize yields of fermentable sugars in subsequent enzymatic hydrolysis and to remove maximum lignin in order to improve rheological attributes of the media. The effects of pretreatment conditions on biomass properties were studied using the Expert Designer software. Concentration of sodium hydroxide and temperature were the factors most affecting pretreatment efficiency. At the optimum (80°C, 39 min, 0.18 g NaOH and 0.06 g lime per g of raw biomass), 93.1 ± 1.0% conversion of cellulose to glucose after enzymatic hydrolysis and 80.3 ± 1.2% yield of monosaccharides (glucose plus xylose and arabinose) from cellulose and hemicellulose of wheat straw were achieved.


2013 ◽  
Vol 860-863 ◽  
pp. 527-533
Author(s):  
Zhen Wu ◽  
Yong Sun ◽  
Lei Hu ◽  
Ning Xu ◽  
Ben Lin Dai

Utilization of wheat straw for bio-based chemicals production is a research focus. In this work, experiments were conducted to study the preparation conditions of activated carbon from formic acid hydrolysis residue of wheat straw applying response surface methodology. The effects of activation reaction temperature, retention time and activator quantity on the decolorizing capacity of activated carbon were dealt with in this paper. Optimal preparation conditions were abtained by response surface methodology as followed: the content of ZnCl2 solution was 14.2%, reaction temperature was 798°C and retained time was 30 mins with a decolorizing capacity of 15.8 mL methylene blue. Results indicated that the technology was available.


2021 ◽  
Author(s):  
Hui Zhang ◽  
Junhui Wu

Abstract To maximize fermentable sugars production, response surface methodology (RSM) was adopted to optimize pretreatment and enzymatic hydrolysis of wheat straw powder (WSP) using the crude cellulases preparation containing xylanases from Aspergillus niger HQ-1. Factors of pretreatment including sodium hydroxide concentration, pretreatment time and temperature were found to have significant effects on sugars production. Results indicated that WSP with particle size 0.3 mm should be pretreated using 1.8% (w/v) sodium hydroxide solution with 25.0% (w/v) of solid loading at 94.0°C for 46.0 min and the optimized pretreatment conditions could result in 90.9% of cellulose recovery, 54.6% of hemicellulose recovery and 72.7% of lignin removal, respectively. Furthermore, variables of enzymatic hydrolysis including enzyme loading, biomass loading and reaction time were proved to have significant effects on sugars yields. After hydrolysis at 50°C for 44.8 h with 7.1% (w/v) of biomass loading, 8.1 FPU/g of enzyme loading and 0.2% (w/v) of Tween-80, maximum yields of reducing sugar (632.92 mg/g) and xylose (149.83 mg/g) could be obtained, respectively. In addition, holocellulose and hemicellulose conversion were 81.6% and 80.0%, respectively. To the best of our knowledge, this is the first report about systematic optimization of sodium hydroxide pretreatment and enzymatic hydrolysis of WSP using RSM.


2014 ◽  
Vol 45 (8) ◽  
pp. 785-795 ◽  
Author(s):  
Ozge Turhan ◽  
Asli Isci ◽  
Behic Mert ◽  
Ozge Sakiyan ◽  
Sedat Donmez

Sign in / Sign up

Export Citation Format

Share Document