Chicoric acid provides better ultraviolet protection than the sum of its substrates in purple coneflower plants

2021 ◽  
Vol 170 ◽  
pp. 113778
Author(s):  
Rao Fu ◽  
Pingyu Zhang ◽  
Zongbi Deng ◽  
Ge Jin ◽  
Yang Zhang
2022 ◽  
Author(s):  
Ning Wang ◽  
Bainian Feng ◽  
Bin Hu ◽  
Yuliang Cheng ◽  
Yahui Guo ◽  
...  

Chicoric acid (CA), a polyphenolic acid obtained from chicory and purple coneflower (Echinacea purpurea), has been regarded as nutraceutical to combat inflammation, virus and obesity. Parkinson’s Disease (PD) is a...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rao Fu ◽  
Pingyu Zhang ◽  
Ge Jin ◽  
Lianglei Wang ◽  
Shiqian Qi ◽  
...  

AbstractPurple coneflower (Echinacea purpurea (L.) Moench) is a popular native North American herbal plant. Its major bioactive compound, chicoric acid, is reported to have various potential physiological functions, but little is known about its biosynthesis. Here, taking an activity-guided approach, we identify two cytosolic BAHD acyltransferases that form two intermediates, caftaric acid and chlorogenic acid. Surprisingly, a unique serine carboxypeptidase-like acyltransferase uses chlorogenic acid as its acyl donor and caftaric acid as its acyl acceptor to produce chicoric acid in vacuoles, which has evolved its acyl donor specificity from the better-known 1-O-β-D-glucose esters typical for this specific type of acyltransferase to chlorogenic acid. This unusual pathway seems unique to Echinacea species suggesting convergent evolution of chicoric acid biosynthesis. Using these identified acyltransferases, we have reconstituted chicoric acid biosynthesis in tobacco. Our results emphasize the flexibility of acyltransferases and their roles in the evolution of specialized metabolism in plants.


Planta Medica ◽  
2013 ◽  
Vol 79 (05) ◽  
Author(s):  
MT Khosravi ◽  
A Mehrafarin ◽  
H Naghdibadi ◽  
E Khosravi

2021 ◽  
Vol 69 (7) ◽  
pp. 2179-2189
Author(s):  
Xiaowen Chang ◽  
Shan Dong ◽  
Wenliang Bai ◽  
Yan Di ◽  
Ruijuan Gu ◽  
...  

2020 ◽  
Vol 38 (3) ◽  
pp. 182-195
Author(s):  
Tarek M. Abou Elmaaty ◽  
Shereen A. Abdeldayem ◽  
Nashwa Elshafai

Thermochromic (TC) pigments offer significant potential for functional and aesthetic design of smart textile materials. In this study, TC (blue and red) pigments were applied to cotton fabrics and printed on especially designed childrenswear by flat screen printing technique. The antibacterial and ultraviolet protection functionalities have been implemented into the fabrics under study by using selenium nanoparticles. The factors affecting the printing process were studied and the optimum formula was screen printed to produce the pattern’s designs of childrenswear. After conducting several tests, the results showed a significant color-changing effect depending on temperature, the color fastness properties to light, wash, and rubbing were excellent. Antibacterial activity of printed fabrics was very good against Bacillus cereus and Escherichia coli bacteria and the anti-ultraviolet protection was found to be very good. The printed fabrics can be as protective childrenswear as shown in this work.


Toxicon ◽  
2019 ◽  
Vol 168 ◽  
pp. S9
Author(s):  
Fábio Florença Cardoso ◽  
Rafael Junqueira Borges ◽  
Thiago Revers Dreyer ◽  
Guilherme Henrique Marchi Salvador ◽  
Walter Luís Garrido Cavalcante ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Dahanayake Nilanthi ◽  
Yue-Sheng Yang

Echinacea purpurea (purple coneflower) is being used for the preparation of more than 240 extracts, salves, and tinctures to help cure diseases like rabies, cold, and upper respiratory infections. Hence, efforts were made to develop a culture medium for successful in vitro culturing of cornflower and to regenerate buds and induce roots to enable mass propagation of selected clones. Of the three levels of sucrose tested as a supplement to MS media (Murashige and Skoog’s medium, 1962) 3% showed better rooting of buds and appeared morphologically normal and identical as compared to those grown at higher and lower concentrations (2 and 4%). The additives hydrolyzed lactabumin (0.0, 100, 300, and 900 mgL−1), peptone (0.0, 100, 300, and 900 mgL−1), and yeast (0.0, 100, 300, and 900 mgL−1) to media containing 0.3 mgL−1 BA (6-benzyladenine) and 0.01 mgL−1 NAA (naphthaleneacetic acid-plant growth regulators) has negatively influenced proliferation of shoots. The higher concentrations of the above have delayed the development of plantlets. Shoot multiplication was enhanced by coconut water with 2% being the best among 4 and 8% tested. Shoot organogenesis was not influenced by copper sulphate (0, 1.5, 3, 6, and 12 mgL−1) and silver nitrate (0.0, 0.5, 2.5, and 12.5 mgL−1) supplements and at higher concentrations of the above inhibited plant growth.


Sign in / Sign up

Export Citation Format

Share Document