Exogenous proline alters the leaf ionomic profiles of transgenic and wild-type tobacco plants under water deficit

2021 ◽  
Vol 170 ◽  
pp. 113830
Author(s):  
Viviane Cacefo ◽  
Alessandra Ferreira Ribas ◽  
Kezia Aparecida Guidorizi ◽  
Luiz Gonzaga Esteves Vieira
2021 ◽  
Vol 22 (16) ◽  
pp. 8398
Author(s):  
Yasmine S. Hezema ◽  
Mukund R. Shukla ◽  
Alok Goel ◽  
Murali M. Ayyanath ◽  
Sherif M. Sherif ◽  
...  

In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


2021 ◽  
Vol 5 (1) ◽  
pp. 168-182
Author(s):  
Hatice DAGHAN ◽  
Veli UYGUR ◽  
Abdullah EREN

Genetiği değiştirilmiş bitkiler, kurşunun (Pb) kökten yer üstü kısımlarına translokasyonunu geliştirmek için büyük bir potansiyele sahip olabilir. Transgenik olmayan ( Nicotiana tabacum L. cv. Petit Havana SR1) ve transgenik (p-cV-ChMTII GFP) tütün bitkileri tarafından Pb alımının sağlanması araştırmak için Çin hamsteri metalotiyonin II gezen bir kap deneyi yapıldı . Transgenik ve transgenik olmayan tütün bitkileri, 0, 1000, 2500, 5000 mg Pb kg- 1 ile Pb (NO 3 ) 2 olarak işlenmiş topraklarda yetiştirildi. Kelimede bir büyüme bölümünde 6 hafta boyunca çiçeklenme aşamasına kadar.Bitkilerin büyümesi, klorofil içeriği, mineral besin elementleri ve düşük glutatyon (GSH) bezleri, bitkilerin Pb alım potansiyeli ile birlikte incelenmiştir. Hem transgenik hem de transgenik olmayan bitkiler için Pb uygulamasındaki artışa bağlı olarak yer üstü biyokütle çevrildi aşamalı bir düşüş gözlendi. Yaprak besinlerinin bulaştığı, aşırı Pb işlemlerinden olumsuz etkilenmiştir, bunlardan en büyük düşüşü. Sürgün Pb yüksek derecesi 76.0 mg kg kadar ulaşan -1 transgenik ve 70.9 mg kg -1 transgenik olmayan bitkilerde. Pb alımı, p-cV-ChMTII GFP'nin tütün bitkisine aktarılmasıyla iyileştirildi; ancak, Pb fitoremediasyonunda yeterli değildi. 


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 806
Author(s):  
Eun Jin Cho ◽  
Quynh Anh Nguyen ◽  
Yoon Gyo Lee ◽  
Younho Song ◽  
Bok Jae Park ◽  
...  

Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacum L.) overexpressing thermostable β-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce β-glucosidase for lignocellulose conversion.


2017 ◽  
Vol 39 (4) ◽  
pp. 426-432
Author(s):  
Michele Trombin-Souza ◽  
Camila Ribeiro de Souza Grzybowski ◽  
Yohana de Oliveira-Cauduro ◽  
Elisa Serra Negra Vieira ◽  
Maristela Panobianco

Abstract: Salinity and water deficit limit the productivity of several crops; thus, studies related to the genetic transformation of seeds in a model plant, such as tobacco, can be an alternative to minimize negative impacts caused by environmental conditions. The purpose of this work was to evaluate the tolerance to osmotic stress of seeds from genetically transformed tobacco plants, with the introduction of the proline-synthesizer gene (p5csf129a), under salinity and water deficit conditions. To do so, five events with differences in proline content were selected, ranging from 0.70 to 10.47 µmoles.g-1 of fresh mass. The used saline concentrations were: zero (distilled water); 50; 100; 150 and 200 mmol.L-1 of NaCl, whereas for the water deficit, simulated with PEG 6000, the following osmotic potentials were used: zero (distilled water); -0.2; -0.4; -0.6 and -0.8 MPa. Each tested treatment was evaluated through germination, first germination count and germination speed index tests. It is possible to conclude that seeds from genetically transformed tobacco plants with overexpression of the gene p5csf129a, a proline synthesizer, are more tolerant to osmotic stresses. Tabacco seeds with a proline content of 10.47 µmol.g-1 showed a better perfomance, revealing higher physiological potential.


2015 ◽  
Vol 109 ◽  
pp. 201-211 ◽  
Author(s):  
María Florencia Iannone ◽  
María Daniela Groppa ◽  
María Patricia Benavides

2012 ◽  
Vol 19 (6) ◽  
pp. 2202-2211 ◽  
Author(s):  
Melina A. Talano ◽  
Débora C. Busso ◽  
Cintia E. Paisio ◽  
Paola S. González ◽  
Silvia A. Purro ◽  
...  

2014 ◽  
Vol 171 (10) ◽  
pp. 807-816 ◽  
Author(s):  
S. Çevik ◽  
A. Yıldızlı ◽  
G. Yandım ◽  
H. Göksu ◽  
M.S. Gultekin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document