scholarly journals Rootstocks Overexpressing StNPR1 and StDREB1 Improve Osmotic Stress Tolerance of Wild-Type Scion in Transgrafted Tobacco Plants

2021 ◽  
Vol 22 (16) ◽  
pp. 8398
Author(s):  
Yasmine S. Hezema ◽  
Mukund R. Shukla ◽  
Alok Goel ◽  
Murali M. Ayyanath ◽  
Sherif M. Sherif ◽  
...  

In grafted plants, the movement of long-distance signals from rootstocks can modulate the development and function of the scion. To understand the mechanisms by which tolerant rootstocks improve scion responses to osmotic stress (OS) conditions, mRNA transport of osmotic responsive genes (ORGs) was evaluated in a tomato/potato heterograft system. In this system, Solanum tuberosum was used as a rootstock and Solanum lycopersicum as a scion. We detected changes in the gene expression levels of 13 out of the 21 ORGs tested in the osmotically stressed plants; of these, only NPR1 transcripts were transported across the graft union under both normal and OS conditions. Importantly, OS increased the abundance of StNPR1 transcripts in the tomato scion. To examine mRNA mobility in transgrafted plants, StNPR1 and StDREB1 genes representing the mobile and non-mobile transcripts, respectively, were overexpressed in tobacco (Nicotiana tabacum). The evaluation of transgenic tobacco plants indicated that overexpression of these genes enhanced the growth and improved the physiological status of transgenic plants growing under OS conditions induced by NaCl, mannitol and polyethylene glycol (PEG). We also found that transgenic tobacco rootstocks increased the OS tolerance of the WT-scion. Indeed, WT scions on transgenic rootstocks had higher ORGs transcript levels than their counterparts on non-transgenic rootstocks. However, neither StNPR1 nor StDREB1 transcripts were transported from the transgenic rootstock to the wild-type (WT) tobacco scion, suggesting that other long-distance signals downstream these transgenes could have moved across the graft union leading to OS tolerance. Overall, our results signify the importance of StNPR1 and StDREB1 as two anticipated candidates for the development of stress-resilient crops through transgrafting technology.

2003 ◽  
Vol 131 (2) ◽  
pp. 454-462 ◽  
Author(s):  
Takashi Tamura ◽  
Kojiro Hara ◽  
Yube Yamaguchi ◽  
Nozomu Koizumi ◽  
Hiroshi Sano

2021 ◽  
Vol 22 (8) ◽  
pp. 4014
Author(s):  
Lin-Feng Wang ◽  
Ting-Ting Li ◽  
Yu Zhang ◽  
Jia-Xing Guo ◽  
Kai-Kai Lu ◽  
...  

Osmotic stress severely inhibits plant growth and development, causing huge loss of crop quality and quantity worldwide. Melatonin is an important signaling molecule that generally confers plant increased tolerance to various environmental stresses, however, whether and how melatonin participates in plant osmotic stress response remain elusive. Here, we report that melatonin enhances plant osmotic stress tolerance through increasing ROS-scavenging ability, and melatonin receptor CAND2 plays a key role in melatonin-mediated plant response to osmotic stress. Upon osmotic stress treatment, the expression of melatonin biosynthetic genes including SNAT1, COMT1, and ASMT1 and the accumulation of melatonin are increased in the wild-type plants. The snat1 mutant is defective in osmotic stress-induced melatonin accumulation and thus sensitive to osmotic stress, while exogenous melatonin enhances the tolerance of the wild-type plant and rescues the sensitivity of the snat1 mutant to osmotic stress by upregulating the expression and activity of catalase and superoxide dismutase to repress H2O2 accumulation. Further study showed that the melatonin receptor mutant cand2 exhibits reduced osmotic stress tolerance with increased ROS accumulation, but exogenous melatonin cannot revert its osmotic stress phenotype. Together, our study reveals that CADN2 functions necessarily in melatonin-conferred osmotic stress tolerance by activating ROS-scavenging ability in Arabidopsis.


Author(s):  
Ai-Hua Wang ◽  
Lan Yang ◽  
Xin-Zhuan Yao ◽  
Xiao-Peng Wen

AbstractPhosphoethanolamine N-methyltransferase (PEAMTase) catalyzes the methylation of phosphoethanolamine to produce phosphocholine and plays an important role in the abiotic stress response. Although the PEAMT genes has been isolated from many species other than pitaya, its role in the drought stress response has not yet been fully elucidated. In the present study, we isolated a 1485 bp cDNA fragment of HpPEAMT from pitaya (Hylocereus polyrhizus). Phylogenetic analysis showed that, during its evolution, HpPEAMT has shown a high degree of amino acid sequence similarity with the orthologous genes in Chenopodiaceae species. To further investigate the function of HpPEAMT, we generated transgenic tobacco plants overexpressing HpPEAMT, and the transgenic plants accumulated significantly more glycine betaine (GB) than did the wild type (WT). Drought tolerance trials indicated that, compared with those of the wild-type (WT) plants, the roots of the transgenic plants showed higher drought tolerance ability and exhibited improved drought tolerance. Further analysis revealed that overexpression of HpPEAM in Nicotiana tabacum resulted in upregulation of transcript levels of GB biosynthesis-related genes (NiBADH, NiCMO and NiSDC) in the leaves. Furthermore, compared with the wild-type plants, the transgenic tobacco plants displayed a significantly lower malondialdehyde (MDA) accumulation and higher activities of the superoxide dismutase (SOD) and peroxidase (POD) antioxidant enzymes under drought stress. Taken together, our results suggested that HpPEAMT enhanced the drought tolerance of transgenic tobacco.


2021 ◽  
Vol 5 (1) ◽  
pp. 168-182
Author(s):  
Hatice DAGHAN ◽  
Veli UYGUR ◽  
Abdullah EREN

Genetiği değiştirilmiş bitkiler, kurşunun (Pb) kökten yer üstü kısımlarına translokasyonunu geliştirmek için büyük bir potansiyele sahip olabilir. Transgenik olmayan ( Nicotiana tabacum L. cv. Petit Havana SR1) ve transgenik (p-cV-ChMTII GFP) tütün bitkileri tarafından Pb alımının sağlanması araştırmak için Çin hamsteri metalotiyonin II gezen bir kap deneyi yapıldı . Transgenik ve transgenik olmayan tütün bitkileri, 0, 1000, 2500, 5000 mg Pb kg- 1 ile Pb (NO 3 ) 2 olarak işlenmiş topraklarda yetiştirildi. Kelimede bir büyüme bölümünde 6 hafta boyunca çiçeklenme aşamasına kadar.Bitkilerin büyümesi, klorofil içeriği, mineral besin elementleri ve düşük glutatyon (GSH) bezleri, bitkilerin Pb alım potansiyeli ile birlikte incelenmiştir. Hem transgenik hem de transgenik olmayan bitkiler için Pb uygulamasındaki artışa bağlı olarak yer üstü biyokütle çevrildi aşamalı bir düşüş gözlendi. Yaprak besinlerinin bulaştığı, aşırı Pb işlemlerinden olumsuz etkilenmiştir, bunlardan en büyük düşüşü. Sürgün Pb yüksek derecesi 76.0 mg kg kadar ulaşan -1 transgenik ve 70.9 mg kg -1 transgenik olmayan bitkilerde. Pb alımı, p-cV-ChMTII GFP'nin tütün bitkisine aktarılmasıyla iyileştirildi; ancak, Pb fitoremediasyonunda yeterli değildi. 


Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 806
Author(s):  
Eun Jin Cho ◽  
Quynh Anh Nguyen ◽  
Yoon Gyo Lee ◽  
Younho Song ◽  
Bok Jae Park ◽  
...  

Here, we report an increase in biomass yield and saccharification in transgenic tobacco plants (Nicotiana tabacum L.) overexpressing thermostable β-glucosidase from Thermotoga maritima, BglB, targeted to the chloroplasts and vacuoles. The transgenic tobacco plants showed phenotypic characteristics that were significantly different from those of the wild-type plants. The biomass yield and life cycle (from germination to flowering and harvest) of the transgenic tobacco plants overexpressing BglB were 52% higher and 36% shorter than those of the wild-type tobacco plants, respectively, indicating a change in the genome transcription levels in the transgenic tobacco plants. Saccharification in biomass samples from the transgenic tobacco plants was 92% higher than that in biomass samples from the wild-type tobacco plants. The transgenic tobacco plants required a total investment (US$/year) corresponding to 52.9% of that required for the wild-type tobacco plants, but the total biomass yield (kg/year) of the transgenic tobacco plants was 43% higher than that of the wild-type tobacco plants. This approach could be applied to other plants to increase biomass yields and overproduce β-glucosidase for lignocellulose conversion.


2012 ◽  
Vol 19 (6) ◽  
pp. 2202-2211 ◽  
Author(s):  
Melina A. Talano ◽  
Débora C. Busso ◽  
Cintia E. Paisio ◽  
Paola S. González ◽  
Silvia A. Purro ◽  
...  

2015 ◽  
Vol 85 (1) ◽  
pp. 148-160 ◽  
Author(s):  
Alessandro Occhialini ◽  
Myat T. Lin ◽  
P. John Andralojc ◽  
Maureen R. Hanson ◽  
Martin A. J. Parry

Sign in / Sign up

Export Citation Format

Share Document